• Title/Summary/Keyword: mannanase gene

Search Result 21, Processing Time 0.025 seconds

Cloning, High-Level Expression, Purification, and Properties of a Novel Endo-${\beta}$-1,4-Mannanase from Bacillus subtilis G1 in Pichia pastoris

  • Vu, Thi Thu Hang;Quyen, Dinh Thi;Dao, Thi Tuyet;Nguyen, Sy Le Thanh
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.331-338
    • /
    • 2012
  • A novel gene coding for an endo-${\beta}$-1,4-mannanase (manA) from Bacillus subtilis strain G1 was cloned and overexpressed in P. pastoris GS115, and the enzyme was purified and characterized. The manA gene consisted of an open reading frame of 1,092 nucleotides, encoding a 364-aa protein, with a predicted molecular mass of 41 kDa. The ${\beta}$-mannanase showed an identity of 90.2-92.9% ${\leq}95%$) with the corresponding amino acid sequences from B. subtilis strains deposited in GenBank. The purified ${\beta}$-mannanase was a monomeric protein on SDS-PAGE with a specific activity of 2,718 U/mg and identified by MALDI-TOF mass spectrometry. The recombinant ${\beta}$-mannanase had an optimum temperature of $45^{\circ}C$ and optimum pH of 6.5. The enzyme was stable at temperatures up to $50^{\circ}C$ (for 8 h) and in the pH range of 5-9. EDTA and most tested metal ions showed a slightly to an obviously inhibitory effect on enzyme activity, whereas metal ions ($Hg^{2+}$, $Pb^{2+}$, and $Co^{2+}$) substantially inhibited the recombinant ${\beta}$-mannanase. The chemical additives including detergents (Triton X-100, Tween 20, and SDS) and organic solvents (methanol, ethanol, n-butanol, and acetone) decreased the enzyme activity, and especially no enzyme activity was observed by addition of SDS at the concentrations of 0.25-1.0% (w/v) or n-butanol at the concentrations of 20-30% (v/v). These results suggested that the ${\beta}$-mannanase expressed in P. pastoris could potentially be used as an additive in the feed for monogastric animals.

Construction of a Shuttle Vector for Protein Secretory Expression in Bacillus subtilis and the Application of the Mannanase Functional Heterologous Expression

  • Guo, Su;Tang, Jia-Jie;Wei, Dong-Zhi;Wei, Wei
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.431-439
    • /
    • 2014
  • We report the construction of two Bacillus subtilis expression vectors, pBNS1/pBNS2. Both vectors are based on the strong promoter P43 and the ampicillin resistance gene expression cassette. Additionally, a fragment with the Shine-Dalgarno sequence and a multiple cloning site (BamHI, SalI, SacI, XhoI, PstI, SphI) were inserted. The coding region for the amyQ (encoding an amylase) signal peptide was fused to the promoter P43 of pBNS1 to construct the secreted expression vector pBNS2. The applicability of vectors was tested by first generating the expression vectors pBNS1-GFP/pBNS2-GFP and then detecting for green fluorescent protein gene expression. Next, the mannanase gene from B. pumilus Nsic-2 was fused to vector pBNS2 and we measured the mannanase activity in the supernatant. The mannanase total enzyme activity was 8.65 U/ml, which was 6 times higher than that of the parent strain. Our work provides a feasible way to achieve an effective transformation system for gene expression in B. subtilis and is the first report to achieve B. pumilus mannanase secretory expression in B. subtilis.

Molecular cloning and characterization of β-mannanase B from Cellulosimicrobium sp. YB-43 (Cellulosimicrobium sp. YB-43의 mannanase B 유전자 클로닝과 특성 분석)

  • Yoon, Ki-Hong
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.336-343
    • /
    • 2016
  • A mannanase gene was cloned into Escherichia coli from Cellulosimicrobium sp. YB-43, which had been found to produce two kinds of mannanase, and sequenced completely. This mannanase gene, designated manB, consisted of 1,284 nucleotides encoding a polypeptide of 427 amino acid residues. Based on the deduced amino acid sequence, the ManB was identified to be a modular enzyme including two carbohydrate binding domains besides the catalytic domain, which was highly homologous to mannanases belonging to the glycosyl hydrolase family 5. The N-terminal amino acid sequence of ManB, purified from a cell-free extract of the recombinant E. coli carrying a Cellulosimicrobium sp. YB-43 manB gene, has been determined as QGASAASDG, which was correctly corresponding to signal peptide predicted by SignalP4.1 server for Gram-negative bacteria. The purified ManB had a pH optimum for its activity at pH 6.5~7.0 and a temperature optimum at $55^{\circ}C$. The enzyme was active on locust bean gum (LBG), konjac and guar gum, while it did not exhibit activity towards carboxymethylcellulose, xylan, starch, and para-nitrophenyl-${\beta}$-mannopyranoside. The activity of enzyme was inhibited very slightly by $Mg^{2+}$, $K^+$, and $Na^+$, and significantly inhibited by $Cu^{2+}$, $Zn^{2+}$, $Mn^{2+}$, and SDS. The enzyme could hydrolyze mannooligosaccharides larger than mannobiose, which was the most predominant product resulting from the ManB hydrolysis for mannooligosaccharides and LBG.

Production and Properties of Mannanase and Xylanase by a Bacillus subtilis Isolate (Bacillus subtilis 분리균의 Mannanase와 Xylanase 생산성과 효소 특성)

  • Yoon, Ki-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.3
    • /
    • pp.204-211
    • /
    • 2015
  • A bacterial strain capable of hydrolyzing xylan and locust bean gum (LBG) was isolated from the Saemangeum tideland of Korea. Based on the biochemical properties and the 16S rRNA gene sequence, the isolate YB-30 was identified as Bacillus subtilis. Xylanase productivity was increased effectively when B. subtilis YB-30 was grown in the presence of wheat bran, while mannanase productivity was increased drastically when grown in the presence of konjac or LBG. Particularly, maximum mannanase and xylanase activities were detected in the culture filtrate of media containing 3.5% konjac and 1% wheat bran. Both enzyme productivities reached maximum levels in the stationary growth phase. The culture filtrate exhibited the highest activity at 60℃ and pH 6.0 for mannanase and at 55℃ and pH 5.5 for xylanase, respectively. Both enzymes were not stable at high temperatures and xylanase was less stable than mannanase. In addition, wheat bran was hydrolyzed to liberate reducing sugar to a greater extent than rice bran by the culture filtrate because the wheat bran contained more arabinoxylan than the rice bran. Hence, xylanase and mannanase produced by B. subtilis YB-30 have a potential use as feed additive enzymes.

Comparison of Acidic pH and Temperature Stabilities between Two Bacillus Mannanases Produced from Recombinant Escherichia coli (재조합 대장균으로부터 생산된 Bacillus 속 균주 유래 Mannanases의 내산성과 열안정성 비교)

  • Jeon, Ho Jin;Yoon, Ki-Hong
    • Korean Journal of Microbiology
    • /
    • v.50 no.4
    • /
    • pp.327-333
    • /
    • 2014
  • Two genes encoding the mannanase of Bacillus sp. YB-1401 and B. amyloliquefaciens YB-1402, which had been isolated at acidic pH as mannanase producers, were each cloned into Escherichia coli, and sequenced. Both mannanase genes consisted of 1,080 nucleotides, encoding polypeptides of 360 amino acid residues. The deduced amino acid sequences of the two mannanase genes differed by four amino acid residues different, and were highly homologous to those of mannanases belonging to the glycosyl hydrolase family 26. Comparison of two mannanases produced from recombinant E. coli indicated that His-tagged mannanase of YB-1402 (HtMAN1402) was more stable than that of YB-1401 at acidic pH and high temperature. In particular, HtMAN1402 retained more than 50% of its activity at pH 3.0 after 4 h of pre-incubation, suggesting the enzyme is a valuable candidate for use as a feed additive. In addition, thermostability of the two mannanases was found to be enhanced by $Ca^{2+}$ ions.

Production and Properties of Hemicellulases by an Isolate of Microbacterium sp. (Microbacterium sp. 분리균의 Hemicellulases 생산성과 효소특성)

  • Yoon, Ki-Hong
    • Korean Journal of Microbiology
    • /
    • v.47 no.3
    • /
    • pp.225-230
    • /
    • 2011
  • A bacterium producing the extracellular mannanase and xylanase was isolated from Korean farm soil by successive subcultures in a minimal medium supplemented with palm kernel meal (PKM) and rice bran. The isolate YB-1106 showed 98% similarity with Microbacterium arabinogalactanolyticum on the basis of 16S rRNA gene sequences. The additional carbohydrates including locust bean gum (LBG) and PKM increased the mannanase productivity of the YB-1106, while the xylanase productivity of the isolate was increased by wheat bran, oat spelt xylan, rice bran and xylose. Particularly, maximum mannanase and xylanase activities were obtained in the culture filtrate of tryptic soy broth supplemented with 1% LBG or 2% wheat bran, respectively. Both enzyme activities were produced at stationary growth phase. The mannanase of culture supernatant was the most active at $50^{\circ}C$ and pH 6.0, while xylanase of culture supernatant was the most active at $55^{\circ}C$ and pH 6.5. The predominant products resulting from the mannanase or xylanase hydrolysis were oligosaccharides for LBG or xylan, respectively.

Isolation of Mannanase-producing Bacteria, Bacillus subtilis WL-6 and WL-11, and Cloning and Characterization of Mannanase (Bacillus subtilis 분리균 2주 유래 mannanases의 특성 비교)

  • Yoon, Ki-Hong
    • Journal of Life Science
    • /
    • v.26 no.10
    • /
    • pp.1113-1120
    • /
    • 2016
  • Two bacterial strains producing extracellular man nanase were isolated from doenjang, a traditionally fermented soybean paste in Korea. The isolates, WL-6 and WL-11, were identified as Bacillus subtiis on the basis of their 16S rRNA gene sequences, morphological, and biochemical properties. Two genes encoding the mannanase of both B. subtilis WL-6 and B. subtilis WL-11 were each cloned into Escherichia coli, and their nucleotide sequences were determined. Both mannanase genes consisted of 1,086 nucleotides, encoding polypeptides of 362 amino acid residues. The deduced amino acid sequences of the two WL-6 and WL-11 mannanases, designated Man6 and Man11, respectively, differed from each other by eight amino acid residues, and they were highly homologous to those of mannanases belonging to the glycosyl hydrolase family 26. The 26 amino acid stretch in the N-terminus of Man6 and Man11 was a predicted signal peptide. Both Man6 and Man11 were localized at the level of 94–95% in an intracellular fraction of recombinant E. coli cells. The enzymes hydrolyzed both locust bean gum and mannooligosaccharides, including mannotriose, mannotetraose, mannopentaose, and mannohexaose, forming mannobiose and mannotriose as predominant products. The optimal reaction conditions were 55°C and pH 6.0 for Man6, and 60°C and pH 5.5 for Man11. Man11 was more stable than Man6 at high temperatures.

Isolation and Characterization of Mannanase-Producing Bacillus amyloliquefaciens YJ17 from Spent Mushroom (Flammulina velutipes) Substrates

  • Kim, Hye Soo;Kim, Chul Hwan;Kwon, Hyun Sook;Cho, Soo Jeong
    • Journal of Mushroom
    • /
    • v.14 no.1
    • /
    • pp.21-26
    • /
    • 2016
  • The mannanase-producing bacteria, designated YJ17, was isolated from spent mushroom (Flammulina velutipes) substrates. The isolate YJ17 was a facultative anaerobic and was grown at temperatures ranging from $20^{\circ}C$ to $50^{\circ}C$ with an optimal temperature of $40^{\circ}C$. The DNA G+C content of the YJ17 was 44 mol%. The major fatty acids were anteiso-15:0 (38.9%), 17:0 (7.6%), and iso-15:0 (36.5%). The 16S rRNA gene sequence similarity between the isolate YJ17 and other Bacillus strains was from 98% to 99%. In the phylogenetic analysis based on these sequences, the isolate YJ17 and Bacillus amyloliquefaciens clustered within a group together and separated from other species of Bacillus. Based on the physiological and molecular properties, the isolate YJ17 was classified within the genus Bacillus as B. amyloliquefaciens YJ17. The optimal pH and temperature for mannanase activity of B. amyloliquefaciens YJ17 were pH 7.0 and $50^{\circ}C$, respectively.

Gene Cloning, Expression, and Characterization of a Novel ${\beta}$-Mannanase from Bacillus circulans CGMCC 1416

  • Li, Yanan;Yang, Peilong;Meng, Kun;Wang, Yaru;Luo, Huiying;Wu, Ningfeng;Fan, Yuliu;Yao, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.160-166
    • /
    • 2008
  • A DNA fragment containing 2,079 base pairs from Bacillus circulans CGMCC 1416 was cloned using degenerate PCR and inverse PCR. An open reading frame containing 981 bp was identified that encoding 326 amino acids residues, including a putative signal peptide of 31 residues. The deduced amino acid sequence showed the highest identity (68.1%) with $endo-{\beta}-1,4-D-mannanase$ from Bacillus circulans strain K-1 of the glycoside hydrolase family 5 (GH5). The sequence encoding the mature protein was cloned into the pET-22b(+) vector and expressed in Escherichia coli as a recombinant fusion protein containing an N-terminal hexahistidine sequence. The fusion protein was purified by $Ni^{2+}$ affinity chromatography and its hexahistidine tag cleaved to yield a 31-kDa ${\beta}$-mannanase having a specific activity of 481.55U/mg. The optimal activity of the purified protein, MANB48, was at $58^{\circ}C$ and pH 7.6. The hydrolysis product on substrate locust bean gum included a monosaccharide and mainly oligosaccharides. The recombinant MANB48 may be of potential use in the feed industry.

Isolation and Characterization of Mannanase Producing Bacillus amyloliquefaciens CS47 from Horse Feces (말 분변으로부터 mannanase를 분비하는 Bacillus amyloliquefaciens CS47의 분리 및 특성)

  • Cho, Soo-Jeong
    • Journal of Life Science
    • /
    • v.19 no.12
    • /
    • pp.1724-1730
    • /
    • 2009
  • The mannanase-producing bacteria, designated CS47, was isolated from the fresh feces of three horses (from a farm in Jinju National University). The isolate CS47 was facultatively anaerobic and grew at temperatures ranging from $20^{\circ}C$ to $50^{\circ}C$ with an optimal temperature of $38^{\circ}C$. The DNA G+C content of the isolate CS47 was 44 mlo%. The major fatty acids were anteiso-15:0 (39.6%), 17:0 (7.6%), and iso-15:0 (37.8%). The 16S rRNA gene sequence similarity between the isolate CS47 and other Bacillus strains varied from 93% to 98%. In the phylogenetic analysis based on these sequences, the isolate CS47 and Bacillus amyloliquefaciens clustered within a group and separated from other species of Bacillus. Based on the physiological and molecular properties, the isolate CS47 was classified within the genus Bacillus as Bacillus amyloliquefaciens CS47. The optimal pH and temperature for mannanase activity of B. amyloliquefaciens CS47 were pH 6.0 and $50^{\circ}C$, respectively. The thermal stability of mannanase from B. amyloliquefaciens CS47 is valuable when using this enzyme in industrial application.