• Title/Summary/Keyword: manipulator inverse kinematics

Search Result 102, Processing Time 0.021 seconds

The Forward Kinematics Solution for Casing Oscillator Using the Kinematic Inversion (기구학적 전이를 이용한 케이싱 오실레이터의 순기구학 해석)

  • 배형섭;백재호;박명관
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.130-139
    • /
    • 2004
  • The Casing Oscillator is a bore file Equipment for the all-casing process. All-casing process is a method of foundation work in construction yard to oscillate steel Casing in the ground. The existing Casing Oscillator has some problem like not boring horizontally with disturbance and not driving Casing othor angle except horizon. To solve problem, the new structure Casing Oscillator is presented and studied. The performance of Casing Oscillator is improved by kinematics analysis. The Casing Oscillator is similar to the parallel manipulator in structure. So we obtain Inverse kinematics solution of Casing Oscillator easily. But it is difficult to solve forward kinematics of Casing Oscillator. T his paper presents a novel pose description corresponding to the structure characteristics of parallel manipulators. Through analysis on geometry theory, we obtain a new method of the closed-form solution to the forward kinematics using Kinematic Inversion. The closed-form solution contains two different meanings -analytical and real-time. So we reach the goal of practical application and control. Closed-form forward kinematics solution is verified by an inverse kinematics analysis. It shows that the method has a practical value for real -time control and inverse kinematics servo control.

Kinimatic Analysis of a New Clss of 6-DOF Parallel Manipulator (새로운 6자유도 병렬 매니퓰레이터의 기구학 해석)

  • Byun, Yong-Kyu;Jo, Hyung-Suck
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.414-430
    • /
    • 1996
  • In this paper, a new kinematic structure of a parallel manipulator with six Cartesian degrees of freedom is proposed. It consists of a platform which is connected to a fixed base by means of 3-PPSP(parameters P, S denote the prismatic, spherical joints) subchains. Each subchain has a link which is concected to a passive prismatic joint at the one end and a passive spherical joint at the other. The spherical joint is then attached to perpendicularly arranged prismatic actuators which are fixed at the base. The spherical joint is then attached to perpendicularly arranged prismatic actuators which are fixed at the base. This arrangement provides a basis to control all six Cartesian degrees of motion of the platform in space. Due to its efficient architecture, the colsed-form solutions of the inverse and forward kinematics can be obtained. As a consequence, this new kinematic structure can be servo controlled using simple inverse kinematics becaese forward kinematics allows for measuring the platform's position and orientation in Cartesian space. Furthermore, the proposed structure provides an effective functional workspace. Series of simulations are performed to verify the results of the kinematics analyses.

An Analysis of Inverse Kinematics and Singular Configuration for Six Axes Robot with Wrist Offset (ICEIC'04)

  • Lee YoungDae;Cho KumBae
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.263-268
    • /
    • 2004
  • The inverse kinematics problem is to find a set of joint variable values that will place the end effector of a robot manipulator into a given pose. Pieper has shown that a sufficient condition for a manipulator to have a closed form solution is that three adjacent joint axes intersects, hence the six axes robot with spherical wrist allows closed form solution. But many industrial robots have a non-spherical wrist to provide a stronger wrist configuration so that they can handle heavy payloads. Also, the use of a non-spherical wrist can result in a cheap and simple wrist arrangement than when all three axes intersect at a common point. In these cases, closed form solutions cannot be found. Therefore numerical technique must be used to solve the inverse kinematics equations. This paper proposes a new algorithm that can be used for finding inverse kinematics solution of the six axes robot with non-spherical wrist. Computer simulations are provided to prove the usefulness of our method.

  • PDF

Hyper Redundant Manipulator Using Compound Three-Bar Linkages

  • Koganezawa Koichi
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.320-327
    • /
    • 2005
  • A new mechanism for hyper redundant manipulator (HRM) is presented, which comprises of serially assembled compound three-bar linkages (CTL). The CTL mechanism has some unique properties. This paper presents the forward and inverse kinematics of this mechanism and shows the simulation of the HRM havig 9 CTL units. The recursive algorithm of the inverse kinematics that the author originally developed is employed. It is fast and stable ; moreover, it enables us to obtain a solution in which the end-point of the HRM is controlled by a portion of joints. It also presents the method of the dynamical analysis. There exist kinematical constraints in the proposed closed linkage mechanism. In the dynamic analysis constraints are sufficiently sustained by the constraint stabilization method that the author developed. The mechanical structure of the HRM having some CTL units that is under construction is shown.

Jacobian Analysis of Casing Oscillator Using the Inverse Kinematics (역기구학을 이용한 케이싱 오실레이터의 자코비안 해석)

  • 배형섭;백재호;이은준;박명관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.576-579
    • /
    • 2002
  • This paper presents the jacobian analysis of new type Casing Oscillator using the inverse kinematics, and to search for it's singularities through the jacobian analysis. All parallel manipulator have some singularities in workspace or it's outside workspace. Singularities were cleared by many other study of parallel manipulator f3r that reason recent publication of device control. In this paper defined that singularities of new file of Casing Oscillator and, to show it's graph. Finally this paper will be used for a practical example for construction spot, aviation simulator, vehicles simulator, military equipment etc.

  • PDF

Development of a New Buffing Robot Manipulator for Shoes (새로운 신발 버핑로봇 매니퓰레이터 개발)

  • Hwang Gyu-Deuk;Cho Sung-Duk;Choi Hyeung-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.76-83
    • /
    • 2006
  • In this paper, an analysis on a new robot manipulator developed for the side buffing of the shoes is presented. The robot manipulator is composed of five degrees of freedom. An analysis on the forward and inverse kinematics was performed. Through the analysis, an analytic solution was derived for the joint angles corresponding to the position and orientation of the tool in the Cartesian coordinates. The hardware system of the robot composed of the control system, input/output interface system, and related electronic system was developed. The communication system was also developed to interact the robot with the related surrounding systems. A graphic user interface(GUI) program including the forward/inverse kinematics, control algorithm, and communication program was developed using visual C++ language.

Solution Space of Inverse Differential Kinematics (역미분기구학의 해 공간)

  • Kang, Chul-Goo
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.4
    • /
    • pp.230-244
    • /
    • 2015
  • Continuous-path motion control such as resolved motion rate control requires online solving of the inverse differential kinematics for a robot. However, the solution space of the inverse differential kinematics related to Jacobian J is not well-established. In this paper, the solution space of inverse differential kinematics is analyzed through categorization of mapping conditions between joint velocities and end-effector velocity of a robot. If end-effector velocity is within the column space of J, the solution or the minimum norm solution is obtained. If it is not within the column space of J, an approximate solution by least-squares is obtained. Moreover, this paper introduces an improved mapping diagram showing orthogonality and mapping clearly between subspaces, and concrete examples numerically showing the concept of several subspaces. Finally, a solver and graphics user interface (GUI) for inverse differential kinematics are developed using MATLAB, and the solution of inverse differential kinematics using the GUI is demonstrated for a vertically articulated robot.

New Continuous Variable Space Optimization Methodology for the Inverse Kinematics of Binary Manipulators Consisting of Numerous Modules (수많은 모듈로 구성된 이진 매니플레이터 역기구 설계를 위한 연속변수공간 최적화 신기법 연구)

  • Jang Gang-Won;Nam Sang Jun;Kim Yoon Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1574-1582
    • /
    • 2004
  • Binary manipulators have recently received much attention due to hyper-redundancy, light weight, good controllability and high reliability. The precise positioning of the manipulator end-effecter requires the use of many modules, which results in a high-dimensional workspace. When the workspace dimension is large, existing inverse kinematics methods such as the Ebert-Uphoff algorithm may require impractically large memory size in determining the binary positions of all actuators. To overcome this limitation, we propose a new inverse kinematics algorithm: the inverse kinematics problem is formulated as an optimization problem using real-valued design variables, The key procedure in this approach is to transform the integer-variable optimization problem to a real-variable optimization problem and to push the real-valued design variables as closely as possible to the permissible binary values. Since the actual optimization is performed in real-valued design variables, the design sensitivity becomes readily available, and the optimization method becomes extremely efficient. Because the proposed formulation is quite general, other design considerations such as operation power minimization can be easily considered.

Development of the Robot Manipulator for Kinematies (기구학적 분석을 이용한 로봇 매니퓰레이터 개발)

  • Min, Byeong-Ro;Lee, Dae-Weon
    • Journal of Bio-Environment Control
    • /
    • v.13 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • This study is kinematics for the manipulator development of cucumber harvesting. A theory value was verified by repeated error measurement after the forward kinematics or inverse kinematics analysis of manipulator. Manipulator is consisted of one perpendicular link and two revolution link. The transformation of manipulator can be valued by kinematics using Denavit-Hartenberg parameter. The value of inverse kinematics which is solved by three angles faction shows two types. Repeated errors refered maximum 2.60 mm, 2.05mm and 1.55 mm according to X, Y, Z axis. In this study, the actual coordinates of maximum point and minimum point were agreement in the forward kinematics or inverse kinematics. The results of repeated error measurement were reflect to be smaller compared to a diameter of cucumber. measurement errors were determined by experimented errors during the test. For reducing errors of manipulator and improving work efficiency, the number of link should be reduced and breeding and cultural environment should be considered to reduce the weight and use the hard stuff. The velocity of motor for working should be considered, too.

Forward Kinematics Analysis of a Parallel Manipulator Using Neural Network (MEURAL NETWORK을 이용한 병렬매니플레이터의 순기구학 해석)

  • 이제섭;최병오;조택동
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.224-228
    • /
    • 2000
  • In this paper, the kinematics of the new type of parallel manipulator is studied, and neural network is applied to solve the forward kinematics problem. The parallel manipulator, called a Stewart platform, has an easy and unique solution about the inverse kinematics, however the forward kinematics is difficult to get the solution because of the lack of an efficient algorithm due to its highly nonlinearity. This paper proposes the neural network scheme as an alternative Newton-Raphson method. The neural network is found to improve its accuracy by adjusting the offset of the result obtained.

  • PDF