• Title/Summary/Keyword: manhole

Search Result 121, Processing Time 0.025 seconds

Fiber-To-The-Pole(FTTP)-A NOVEL ACCESS NETWORK SOLUTION USING WDM-PON (WDM-PON기반 FTTP 광가입자망 시스템)

  • Kim, Bo-Gyeom;Park, Tae-Dong;Choe, Yeong-Bok;O, Ho-Seok;Lee, Won-Hyeong
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.107-108
    • /
    • 2006
  • In order to meet the customers'emerging demands for more bandwidth and diverse IP multimedia applications including high definition(HD) video streaming service, KT presents innovative FTTP solution using WDM-PON system. FTTP comprises an OLT inside the central office, a fiber optic distribution network including a passive remote node in the outside plant, and ONU installed on the pole or wall of customers premise. The passive remote node is located in a manhole near the subscribers and does not require any electrical power supply. And finally, UTP cable is connected from ONU to subscribers'IP appliances like PC or HGW or IP-STB. KT finished its FTTP trial service in 2004 and commercial deployment has begun since 2005. With this FTTP solution, each subscriber can enjoy high-speed internet service with speeds of up to symmetric 100 Mbit/s and various IP media applications including HD quality IP video streaming service and high quality video phone service.

  • PDF

Skid Resistance of the Sidewalks in Winter (겨울철 보도 미끄럼 저항)

  • Kim, Yong Seok
    • International Journal of Highway Engineering
    • /
    • v.15 no.6
    • /
    • pp.17-23
    • /
    • 2013
  • PURPOSES : This study aimed to measure the skid resistance of the sidewalk in order to find out the relationship between different surface types and skid resistance. By using British Pendulum Tester, skid resistance of sidewalk was measured in a wet after snow-melt, sludgy, and snowy conditions. METHODS : The skid resistance was measured on surfaces including Concrete Interlocking Block Paving, Colour Asphalt Pavement, Granite Block Paving, Manhole, and Tactile Paving for Visually Impaired. Five trials at each measurement were made, and the average and standard deviation were derived. RESULTS : The skid resistance measured in wet after snow-melt, sludgy, and snowy conditions for the various surface types are summarized and compared. Reduction rates of skid resistance of sludgy and snowy against wet after snow-melt are also analysed. The skid resistance variation between measurement points which mimic pedestrian route in study site are analysed to check out the consistency of the skid resistance along the sidewalk. CONCLUSIONS : The study concluded that the skid resistance of sidewalk surfaces varied depending on the surface types and weather conditions. Secondly, reduction rates of skid resistance according to weather changes are varied depending on the surface types, Thirdly, consistency of skid resistance along the pedestrian route is hardly acquired in the study site at least. So, future study on the consistency evaluation for skid resistance along sidewalk is strongly recommended.

Autonomous pothole detection using deep region-based convolutional neural network with cloud computing

  • Luo, Longxi;Feng, Maria Q.;Wu, Jianping;Leung, Ryan Y.
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.745-757
    • /
    • 2019
  • Road surface deteriorations such as potholes have caused motorists heavy monetary damages every year. However, effective road condition monitoring has been a continuing challenge to road owners. Depth cameras have a small field of view and can be easily affected by vehicle bouncing. Traditional image processing methods based on algorithms such as segmentation cannot adapt to varying environmental and camera scenarios. In recent years, novel object detection methods based on deep learning algorithms have produced good results in detecting typical objects, such as faces, vehicles, structures and more, even in scenarios with changing object distances, camera angles, lighting conditions, etc. Therefore, in this study, a Deep Learning Pothole Detector (DLPD) based on the deep region-based convolutional neural network is proposed for autonomous detection of potholes from images. About 900 images with potholes and road surface conditions are collected and divided into training and testing data. Parameters of the network in the DLPD are calibrated based on sensitivity tests. Then, the calibrated DLPD is trained by the training data and applied to the 215 testing images to evaluate its performance. It is demonstrated that potholes can be automatically detected with high average precision over 93%. Potholes can be differentiated from manholes by training and applying a manhole-pothole classifier which is constructed using the convolutional neural network layers in DLPD. Repeated detection of the same potholes can be prevented through feature matching of the newly detected pothole with previously detected potholes within a small region.

Cause of Corrosion and Evaluation of Material Corrosion Resistance on Underground Heat Transport Facilities Connected to Manhole (맨홀과 연결된 지하 열수송설비의 부식 원인 및 재질 내식성 평가)

  • Song, M.J.;Choi, G.;Kim, W.C.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.4
    • /
    • pp.193-202
    • /
    • 2022
  • Manholes and underground spaces are installed to manage the buried heat transport pipes of the district heating system, and the corrosion damage of the equipment placed in this space often occurs. The purpose of this work is to identify locations with a high risk of corrosion damage in the air vent and to establish preventive measures based on precise analysis via sampling of heat transport pipes and air vents that have been used for about 30 years. The residual thickness of the air vent decreased significantly by reaching ~1.1 mm in thickness, and locations of 60~70 mm away from a transport pipe were the most vulnerable to corrosion. The energy dispersive X-ray spectroscopy (EDS) analysis was performed in the corroded oxides, and it was found that chloride ion was contained in the corrosion products. Anodic polarization tests were carried out on the air vent materials (SPPS250, SS304) with varying the amounts of chloride ions at two different temperatures (RT, 80℃). The higher concentration of chloride ions and temperature are, the lower corrosion resistances of both alloys are.

Corrosion Protective Method Applicable to Air Vent Connected with a Heat Transport Pipe (열수송관에 연결된 에어벤트에 적용 가능한 부식 방지 방안)

  • Min Ji Song;Gahyun Choi;Woo Cheol Kim;Soo Yeol Lee
    • Corrosion Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.115-122
    • /
    • 2023
  • This study aimed to elucidate causes of corrosion of heat transport pipes and air vents installed under a manhole of heat transport facilities and suggest effective anticorrosive measures by applying paints or adhesive tapes. It was found that air vent corrosion was attributed to corrosion under insulation caused by the inflow of water and the enrichment of chloride ions. The infiltrated water caused a hydrolysis of polyurethane foam (PUF) insulation by concentrating chloride ions at the interface between a pipe and the PUF. As insulator deteriorated, more chloride ions were eluted as confirmed by ion chromatograph (IC) analysis. As an effective method to prevent air vent corrosion, different types of paints and adhesive tapes with higher corrosion resistance on chloride ions were applied and environmental resistance tests were performed with those samples. Based on environmental test results of samples exposed to 10% HCl solution, it was revealed that a wax tape was the most adequate from a viewpoint of stability at operating condition, environmental resistance, surface treatment, and field applicability.

Synthetic storm sewer network for complex drainage system as used for urban flood simulation

  • Dasallas, Lea;An, Hyunuk;Lee, Seungsoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.142-142
    • /
    • 2021
  • An arbitrary representation of an urban drainage sewer system was devised using a geographic information system (GIS) tool in order to calculate the surface and subsurface flow interaction for simulating urban flood. The proposed methodology is a mean to supplement the unavailability of systematized drainage system using high-resolution digital elevation(DEM) data in under-developed countries. A modified DEM was also developed to represent the flood propagation through buildings and road system from digital surface models (DSM) and barely visible streams in digital terrain models (DTM). The manhole, sewer pipe and storm drain parameters are obtained through field validation and followed the guidelines from the Plumbing law of the Philippines. The flow discharge from surface to the devised sewer pipes through the storm drains are calculated. The resulting flood simulation using the modified DEM was validated using the observed flood inundation during a rainfall event. The proposed methodology for constructing a hypothetical drainage system allows parameter adjustments such as size, elevation, location, slope, etc. which permits the flood depth prediction for variable factors the Plumbing law. The research can therefore be employed to simulate urban flood forecasts that can be utilized from traffic advisories to early warning procedures during extreme rainfall events.

  • PDF

Improvement of the Conductor Temperature Calculation Algorithm for Calculating the Allowable Current in the Underground Channel (지중관로에서의 실제 허용전류 산출을 위한 도체온도 계산 알고리즘 개선에 관한 연구)

  • Lee, Hyang-Beom;Lee, Byung-Chul;Kim, Jung-Hoon;Nam, Yong-Hyun;Kang, Ji-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.352-357
    • /
    • 2018
  • In this paper, the improvement of the conductor temperature calculation algorithm is studied. The allowable current of the underground transmission line is determined by the conductor temperature limit. Usually to calculate the allowable current limit, the conductor temperature is assumed in the most worst environment condition. It is possible to increase the transmission capacity if the actual burial environment is considered. Therefore, in this paper an algorithm is proposed to calculate the conductor temperature by distinguishing two area of a underground transmission line condition - the manhole where the temperature sensor can be installed and the underground transmission line in which the temperature sensor can not be installed easily. When calculating the conductor temperature by the underground line in the pipeline, the existing standard describes each environment as a single soil heat resistance and one ambient temperature. In order to compensate this situation, thermal resistance model that can take into consideration the ground surface temperature and under ground temperature is proposed. It is shown that the accuracy of the proposed model is increased compared with the existing standard calculation result.

A Methodology for the Establishment of CityGML Based 3D Drainage Facility Information Model for Runoff Analysis (강우우수 유출해석을 위한 CityGML 기반 3차원 도시 배수시설 정보모델 구축 방안)

  • Lee, Sang-Ho;Jang, Young-Hoon;Kim, Jong Myung
    • Journal of Korean Society of Disaster and Security
    • /
    • v.9 no.2
    • /
    • pp.77-86
    • /
    • 2016
  • In this study, we have created CityGML based 3D information model for drainage facility, manhole and terrain. It conducted analysis of the rainfall-runoff leak through the information model for obtaining interoperability for information integration between city models. The models have advantages to manage the infrastructure information in point of semantic meaning and geometric information by converting the original 2D GIS construction information into the 3D information model. The input values can be automatically generated through the 3D information model of this study, while the values should be entered manually in the conventional method. Also, it can be useful to check the flooding level and related locations by connecting the result of rainfall interpretation and information model.

Analysis of Effect on Runoff and Water Quality of LID using Infiltration Facilities (우수 침투 시설을 활용한 친환경 도시 개발지구에서의 유출량 및 비점오염 저감 효과 분석)

  • Hwang, Jin-Yong;Yeon, Kyu-Seok;Kim, Ik-Jae;Kim, Ki-Sung;Choi, Joong-Dae;Jeon, Ji-Hong;Lim, Kyoung-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.105-114
    • /
    • 2009
  • With urbanization in many countries, many pervious areas are being converted into impervious areas. These land use changes cause many negative impacts on runoff and water quality in the areas. Especially runoff volume and peak runoff are increasing with urbanization. In addition to the increased runoff, more pollutant transports to the downstream areas. For these reasons, Low Impact Development (LID) are nowadays being introduced in urban planning. For environment-friendly and economical urban development, the LID Integrated Management Practices (IMPs) are applied in various urban development. However, exact effects on runoff and water quality of various LID IMPs are not assessed with proper LID evaluation technique. Thus, the SWMM (Storm Water Management Model) 5.0 model was slightly modified to simulate the effect of infiltration manhole on runoff and water quality. For comparison of runoff and TSS (Total Suspended Solids) from the study area (26.5 ha), three scenarios were made in this study. It was found that runoff volume, peak runoff, and TSS could be reduced with infiltration manholes and pervious pavements to some degree. Although, there are many limitations in the analysis of LID effects on runoff and TSS, similar trends shown in this study would be expected with site-specific LID IMPs. Thus, it is strongly recommended that various site-specific LID IMPs, such as infiltration facilities, should be applied as much as possible for environment-friendly urban planning.

An Efficient Water Pressure Measurement System of the Water Pipes using IoT (IoT를 이용한 상수도관의 효율적인 수압 측정 시스템)

  • Lee, Jae-soo;Choi, In-ho;Hong, Kwon-eui;Choi, Hak-yun;Roh, Hee-jung;Ahn, Jeong-keun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.1
    • /
    • pp.114-122
    • /
    • 2018
  • In this paper, we propose new water pressure measurement system to measure the water pressure of water pipe laid underground beneath the manhole efficiently. For this purpose, we installed water pressure sensor(IoT) which has built-in bluetooth module at valve of water pipe. The proposed system can be managed through collected data which measured at sensor and then transmitted to smart phone through bluetooth connectivity and re-transmitted to server on this system. By checking out water pressure data stored in server from remote location, the persons in charge can confirm the leakage of water pipe or propriety of water pressure in management area. By this procedure, they can detect the existence of condition of water pipe and manage water pressure of water pipe efficiently.