KIPS Transactions on Software and Data Engineering
/
v.13
no.1
/
pp.1-16
/
2024
Over recent years, 6 Sigma has become a key methodology in manufacturing for quality improvement and cost reduction. However, challenges have arisen due to the difficulty in analyzing large-scale data generated by smart factories and its traditional, formal application. To address these limitations, a big data-based 6 Sigma approach has been developed, integrating the strengths of 6 Sigma and big data analysis, including statistical verification, mathematical optimization, interpretability, and machine learning. Despite its potential, the practical impact of this big data-based 6 Sigma on manufacturing processes and management performance has not been adequately verified, leading to its limited reliability and underutilization in practice. This study investigates the efficiency impact of DX SS, a big data-based 6 Sigma, on manufacturing processes, and identifies key success policies for its effective introduction and implementation in enterprises. The study highlights the importance of involving all executives and employees and researching key success policies, as demonstrated by cases where methodology implementation failed due to incorrect policies. This research aims to assist manufacturing companies in achieving successful outcomes by actively adopting and utilizing the methodologies presented.
Sang-Hyeak Yoon;Yoon-Jin Choi;So-Hyun Lee;Hee-Woong Kim
Information Systems Review
/
v.22
no.4
/
pp.75-92
/
2020
As population and generation structures change, more and more customers tend to avoid facing relation due to the development of information technology and spread of smart phones. This phenomenon consists with efficiency and immediacy, which are the consumption patterns of modern customers who are used to information technology, so offline network-oriented distribution companies actively try to switch their sales and services to untact patterns. Recently, untact services are boosted in various fields, but beauty products are not easy to be recommended through untact services due to many options depending on skin types and conditions. There have been many studies on recommendations and development of recommendation systems in the online beauty field, but most of them are the ones that develop recommendation algorithm using survey or social data. In other words, there were not enough studies that classify segments based on user information such as skin types and product preference. Therefore, this study classifies customer segments using machine learning technique K-prototypesalgorithm based on customer information and search log data of mobile application, which is one of untact services in the beauty field, based on which, untact marketing strategy is suggested. This study expands the scope of the previous literature by classifying customer segments using the machine learning technique. This study is practically meaningful in that it classifies customer segments by reflecting new consumption trend of untact service, and based on this, it suggests a specific plan that can be used in untact services of the beauty field.
Recently, many studies have been conducted for safety management in construction sites by incorporating computer vision. Anchor box parameters are used in state-of-the-art deep learning-based object detection and segmentation, and the optimized parameters are critical in the training process to ensure consistent accuracy. Those parameters are generally tuned by fixing the shape and size by the user's heuristic method, and a single parameter controls the training rate in the model. However, the anchor box parameters are sensitive depending on the type of object and the size of the object, and as the number of training data increases. There is a limit to reflecting all the characteristics of the training data with a single parameter. Therefore, this paper suggests a method of applying multiple parameters optimized through data split to solve the above-mentioned problem. Criteria for efficiently segmenting integrated training data according to object size, number of objects, and shape of objects were established, and the effectiveness of the proposed data split method was verified through a comparative study of conventional scheme and proposed methods.
Journal of the Korea Institute of Building Construction
/
v.24
no.1
/
pp.67-75
/
2024
In the context of Korean residential heating systems, Ondol pipelines are a prevalent choice. However, the maintenance of these pipelines becomes a complex task once they are embedded within concrete structures. As time progresses, the accumulation of sludge, corrosive oxides, and microorganisms on the inner surfaces of these pipelines diminishes their heating efficiency. In extreme scenarios, this accumulation can induce corrosion and scale formation, compromising the system's integrity. Consequently, this research introduces an ultrasonic generation system tailored for the upkeep of Ondol pipelines, with the objective of empirically assessing its practicality. This investigation delineates three variants of ultrasonic generating apparatuses: those employing surface vibration, external generation, and internal generation techniques. To emulate the presence of contaminants within the pipelines, substances in powder, slurry, and liquid forms were employed. The efficacy of the cleaning process post-ultrasonic wave application was scrutinized over time, with image analysis methodologies being utilized to evaluate the outcomes. The findings indicate that ultrasonic waves, whether generated externally or internally, exert a beneficial effect on the cleanliness of the pipelines. Given the inherent characteristics of Ondol pipelines, external generation proves impractical, thereby rendering internal generation a more viable solution for pipeline maintenance. It is anticipated that future endeavors will pave the way for innovative maintenance strategies for Ondol pipelines, particularly through the advancement of internal generation technologies for pipeline applications.
Inji Lee;Heung-Min Kim;Youngmin Kim;Hoyong Ahn;Jae-Hyun Ryu;Hoejeong Jeong;Hyun-Dong Moon;Jaeil Cho;Seon-Woong Jang
Korean Journal of Remote Sensing
/
v.40
no.3
/
pp.275-284
/
2024
Monitoring crop growth changes and water content is crucial in the agricultural sector. This study utilized drones equipped with Short Wavelength Infrared (SWIR) sensors, sensitive to moisture changes, to observe soybeans' growth and water content variations. We confirmed that as soybeans grow more vigorously, their water content increases and differences in irrigation levels lead to decreases in vegetation and moisture indices. This suggests that waterlogging slows down soybean growth and reduces water content, highlighting the importance of detailed monitoring of vegetation and moisture indices at different growth stages to enhance crop productivity and minimize damage from waterlogging. Such monitoring could also preemptively detect and prevent the adverse effects of moisture changes, such as droughts, on crop growth. By demonstrating the potential for early diagnosis of moisture stress using drone-based SWIR sensors, this research suggests improvements in the efficiency of large-scale crop management and increases in yield, contributing to agricultural production.
Understanding the status of surface cover in riparian zones is essential for river management and flood disaster prevention. Traditional survey methods rely on expert interpretation of vegetation through vegetation mapping or indices. However, these methods are limited by their ability to accurately reflect dynamically changing river environments. Against this backdrop, this study utilized satellite imagery to apply the Random Forest method to assess the distribution of vegetation in rivers over multiple years, focusing on the Naeseong Stream as a case study. Remote sensing data from Sentinel-2 imagery were combined with ground truth data from the Naeseong Stream surface cover in 2016. The Random Forest machine learning algorithm was used to extract and train 1,000 samples per surface cover from ten predetermined sampling areas, followed by validation. A sensitivity analysis, annual surface cover analysis, and accuracy assessment were conducted to evaluate their applicability. The results showed an accuracy of 85.1% based on the validation data. Sensitivity analysis indicated the highest efficiency in 30 trees, 800 samples, and the downstream river section. Surface cover analysis accurately reflects the actual river environment. The accuracy analysis identified 14.9% boundary and internal errors, with high accuracy observed in six categories, excluding scattered and herbaceous vegetation. Although this study focused on a single river, applying the surface cover classification method to multiple rivers is necessary to obtain more accurate and comprehensive data.
Saba Anwar;Anjum Khalique;Hifzulrahman;Muhammad NaeemTahir;Burhan E Azam;Muhammad Asim Tausif;Sundas Qamar;Hina Tahir;Murtaza Ali Tipu;Muhammad Naveed ul Haque
Animal Bioscience
/
v.37
no.8
/
pp.1387-1397
/
2024
Objective: The objective of the current study was to find out the independent and interactive effects of prilled fat supplementation with protein on the production performance of early lactating Nili Ravi buffaloes. Methods: Sixteen early lactating buffaloes (36.75±5.79 d in milk; mean±standard error) received 4 treatments in 4×4 Latin-square design according to 2×2 factorial arrangements. The dietary treatments were: i) low protein low fat, ii) low protein high fat, iii) high protein low fat, and iv) high protein high fat. The dietary treatments contained 2 protein (8.7% and 11.7% crude protein) and fat levels (2.6% and 4.6% ether extract) on a dry matter basis. Results: The yields of milk and fat increased with increasing protein and fat independently (p≤0.05). Energy-, protein-, and fat-corrected milk yields also increased with increasing protein and fat independently (p≤0.05). Increasing dietary protein increased the protein yield by 3.75% and lactose yield by 3.15% and increasing dietary fat supplies increased the fat contents by 3.93% (p≤0.05). Milk yield and fat-corrected milk to dry matter intake ratios were increased at high protein and high fat levels (p≤0.05). Milk nitrogen efficiency was unaffected by dietary fat (p>0.10), whereas it decreased with increasing protein supplies (p≤0.05). Plasma urea nitrogen and cholesterol were increased by increasing protein and fat levels, respectively (p≤0.05). The values of predicted methane production reduced with increasing dietary protein and fat. Conclusion: It is concluded that prilled fat and protein supplies increased milk and fat yield along with increased ratios of milk yield and fat-corrected milk yields to dry matter intake. However, no interaction was observed between prilled fat and protein supplementation for production parameters, body weight, body condition score and blood metabolites. Predicted methane production decreased with increasing protein and fat levels.
Sang-Yeup Jin;Heung-Bae Choi;Myeong-Soo Han;Hyo-tae Lee;Young-Tae Son
Journal of the Korean Society of Marine Environment & Safety
/
v.30
no.2
/
pp.147-156
/
2024
The sustainable management and enhancement of marine resources are becoming increasingly important issues worldwide. This study was conducted in response to these challenges, focusing on the development and performance comparison of fish detection and classification models as part of a deep learning-based technique for assessing the effectiveness of marine resource enhancement projects initiated by the Korea Fisheries Resources Agency. The aim was to select the optimal model by training various sizes of YOLOv8-Seg models on a fish image dataset and comparing each performance metric. The dataset used for model construction consisted of 36,749 images and label files of 12 different species of fish, with data diversity enhanced through the application of augmentation techniques during training. When training and validating five different YOLOv8-Seg models under identical conditions, the medium-sized YOLOv8m-Seg model showed high learning efficiency and excellent detection and classification performance, with the shortest training time of 13 h and 12 min, an of 0.933, and an inference speed of 9.6 ms. Considering the balance between each performance metric, this was deemed the most efficient model for meeting real-time processing requirements. The use of such real-time fish detection and classification models could enable effective surveys of marine resource enhancement projects, suggesting the need for ongoing performance improvements and further research.
Dae-Wook Cha;Hui-Yeon Jo;Ji-Soo Han;Kwang-Sup Shin;Yun-Hong Min
The Journal of Bigdata
/
v.8
no.2
/
pp.149-163
/
2023
Due to the continuous growth of the E-commerce market, the volume of orders that fulfillment centers have to process has increased, and various customer requirements have increased the complexity of order processing. Along with this trend, the operational efficiency of fulfillment centers due to increased labor costs is becoming more important from a corporate management perspective. Using historical performance data as training data, this study focused on real-time box recommendations applicable to packaging areas during fulfillment center shipping. Four types of data, such as product information, order information, packaging information, and delivery information, were applied to the machine learning model through pre-processing and feature-engineering processes. As an input vector, three characteristics were used as product specification information: width, length, and height, the characteristics of the input vector were extracted through a feature engineering process that converts product information from real numbers to an integer system for each section. As a result of comparing the performance of each model, it was confirmed that when the Gradient Boosting model was applied, the prediction was performed with the highest accuracy at 95.2% when the product specification information was converted into integers in 21 sections. This study proposes a machine learning model as a way to reduce the increase in costs and inefficiency of box packaging time caused by incorrect box selection in the fulfillment center, and also proposes a feature engineering method to effectively extract the characteristics of product specification information.
The port industry has been actively adopting Fourth Industrial Revolution technologies, leading to transformations in port infrastructure, such as automated and smart ports. While these changes have improved port efficiency, they have also increased the potential for Cyber Security incidents, including data leaks and disruptions in terminal operations due to ransomware attacks. Recognizing the need to prioritize Cyber Security measures, a study was conducted, focusing on Busan Port's rapidly automating container terminal in South Korea. The results of the Eisenhower Matrix analysis identified legal and regulatory factors as a top priority in the first quadrant, with educational systems, workforce development, network infrastructure, and policy support in the third quadrant. Subsequently, a Borich Needs Analysis revealed that the highest priority was given to legal improvements in security management systems, while the development of Cyber Security professionals ranked lowest. This study provides foundational research for enhancing Cyber Security in domestic container terminals and offers valuable insights into their future direction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.