• Title/Summary/Keyword: man-made or synthetic vitreous fibers

Search Result 2, Processing Time 0.025 seconds

Size Distribution of Airborne Fibers in Man-made Mineral Fiber Industries (인조광물섬유 산업에서 발생된 공기중 섬유의 크기 분포)

  • Shin, Yong Chul;Yi, Gwang Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.3
    • /
    • pp.213-220
    • /
    • 2005
  • Penetration and health effect of fibers was related with their diameters and length. The purpose of this study is to characterize and compare the diameter and length of airborne man-made mineral fibers(MMMF) or synthetic vitreous fibers in the related industries. The average fiber length of the continuous filament glass, rock wool, refractory ceramic, and glass wool fibers production industries approximately 27, 28, 35, $50-105{\mu}m$. Airborne glass fibers were longest in all the type of MMMFs. The average diameters of airborne fibers generated from refractory ceramic, rock wool, glass wool, continuous filament glass fibers production industries were approximately 1.0, 1.6, 1.5-4 and $10{\mu}m$, respectively. The percentages of respirable fibers(<$3{\mu}m$) were 94% for RCFs, 73% for rock wool fibers, 61.0% for glass fibers, and 1.6% for filament glass fibers. The length of glass fibers were the longest in all types of fibers, and length of the others were similar. The refractory ceramic fibers were smallest in diameters and highest in fraction of respirable fibers.

Comparison of NIOSH Method 7400 A and B Counting Rules for Airborne Man-Made Vitreous Fibers (인조광물섬유에 대한 NIOSH 7400 방법의 A 및 B 계수규칙비교)

  • Sin, Yong Chul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.1
    • /
    • pp.11-16
    • /
    • 2006
  • There are many counting rules for analyzing man-made mineral fibers. The representatives are the NIOSH Method 7400 A and B counting rules. The two rules have different rules of length-to-width ratio(aspect ratio) and diameter. The A rule counts only fibers $>5{\mu}m$ in length, and only fibers with aspect ratio >3:1. The B rule counts only ends of fibers $>5{\mu}m$ in length and $<3{\mu}m$ in diameter, and only fibers with aspect ratio ${\geq}5:1$. The A counting rule had been used before the B counting rule was introduced. The purpose of this study is to compare the A and B counting rules for airborne fibers from various man-made mineral fibers(glass wool fibers, rock wool fibers, refractory ceramic fibers, and continuous filament glass fibers) industries. There were significantly differences between the paired counts of A and B rules in all types of fibers(p<0.05). A rule counts/B rule counts(A/B ratios) were 1.52 for glass fibers, 1.53 for rock wool fibers, 1.19 for RCF, and 1.82 for continuous filament glass fibers. The counting results by A and B counting rules were highly correlated in glass wool fibers, rock wool fibers and refractory ceramic fibers(RCF) samples (r=0.96 for all types of fibers) except continuous filament glass fibers(r=0.82). Regression equations to correct for the differences between counting rules were presented in this paper.