• 제목/요약/키워드: mammography geometry

검색결과 5건 처리시간 0.019초

전기임피던스 단층촬영법을 위한 단순화된 매모그래피 구조의 모델 (A Model of a Simplified Mammography Geometry for Breast Cancer Imaging with EIT)

  • 최명환
    • 산업기술연구
    • /
    • 제26권B호
    • /
    • pp.221-226
    • /
    • 2006
  • Electrical impedance tomography (EIT) is a technique for determining the electrical conductivity and permittivity distribution within the interior of a body from measurements made on its surface. One recent application area of the EIT is the detection of breast cancer by imaging the conductivity and permittivity distribution inside the breast. The present "gold standard" for breast cancer detection is X-ray mammography, and it is desirable that EIT and X-ray mammography use the same geometry. This paper presents a forward model of a simplified mammography geometry for EIT imaging. The mammography geometry is modeled as a rectangular box with electrode arrays on the top and bottom planes. A forward model for the electrical impedance imaging problem is derived for a homogeneous conductivity distribution and Validated by experiment using a phantom tank.

  • PDF

매모그램 구조의 전기저항 영상법에서 정방향 모델의 고유전류 계산 알고리즘 (An Algorithm for Computing Eigen Current of Forward Model of Mammography Geometry for EIT)

  • 최명환
    • 산업기술연구
    • /
    • 제27권B호
    • /
    • pp.91-96
    • /
    • 2007
  • Electrical impedance tomography (EIT) is a technique for determining the electrical conductivity and permittivity distribution within the interior of a body from measurements made on its surface. One recent application area of the EIT is the detection of breast cancer by imaging the conductivity and permittivity distribution inside the breast. The present standard for breast cancer detection is X-ray mammography, and it is desirable that EIT and X-ray mammography use the same geometry. A forward model of a simplified mammography geometry for EIT imaging was proposed earlier. In this paper, we propose an iterative algorithm for computing the current pattern that will be applied to the electrodes. The current pattern applied to the electrodes influences the voltages measured on the electrodes. Since the measured voltage data is going to be used in the impedance imaging computation, it is desirable to apply currents that result in the largest possible voltage signal. We compute the eigenfunctions for a homogenous medium that will be applied as current patterns to the electrodes. The algorithm for the computation of the eigenfunctions is presented. The convergence of the algorithm is shown by computing the eigencurrent of the simplified mammography geometry.

  • PDF

An Optimized Deep Learning Techniques for Analyzing Mammograms

  • Satish Babu Bandaru;Natarajasivan. D;Rama Mohan Babu. G
    • International Journal of Computer Science & Network Security
    • /
    • 제23권7호
    • /
    • pp.39-48
    • /
    • 2023
  • Breast cancer screening makes extensive utilization of mammography. Even so, there has been a lot of debate with regards to this application's starting age as well as screening interval. The deep learning technique of transfer learning is employed for transferring the knowledge learnt from the source tasks to the target tasks. For the resolution of real-world problems, deep neural networks have demonstrated superior performance in comparison with the standard machine learning algorithms. The architecture of the deep neural networks has to be defined by taking into account the problem domain knowledge. Normally, this technique will consume a lot of time as well as computational resources. This work evaluated the efficacy of the deep learning neural network like Visual Geometry Group Network (VGG Net) Residual Network (Res Net), as well as inception network for classifying the mammograms. This work proposed optimization of ResNet with Teaching Learning Based Optimization (TLBO) algorithm's in order to predict breast cancers by means of mammogram images. The proposed TLBO-ResNet, an optimized ResNet with faster convergence ability when compared with other evolutionary methods for mammogram classification.

유방촬영에서 Geant4 시뮬레이션를 이용한 유방조직내 흡수선량에 관한 연구 (A Study on Absorbed Dose in the Breast Tissue using Geant4 simulation for Mammography)

  • 이상호;이종석;한상현
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제35권4호
    • /
    • pp.345-352
    • /
    • 2012
  • 우리나라 여성들의 유방암 발생률이 빠르게 증가하면서 최근 유방검사에 대한 관심과 함께 촬영건수가 급격하게 증가하고 있다. 유방촬영술은 유방암을 조기에 진단할 수 있는 유일한 방법이지만 방사선 피폭에 의한 위해를 간과 할 수 없다. 따라서 유방촬영시 유방 조직 내 흡수되는 방사선량을 계산하는 것은 방사선 피폭에 대한 방호대책을 위해 중요할 수 밖에 없다. 인체 내에 흡수되는 방사선량은 직접 측정이 불가능하기 때문에 통계적인 계산방법이 사용되는데, 기존의 통계적 계산방법들은 인체모형팬텀을 사용하여 인체내부 구조를 묘사함으로써 방사선과 물질과의 상호작용을 전산모사 하도록 하였다. 그러나 최근 인체내 흡수선량 계산에 가장 정확한 것으로 알려진 몬테카를로 방법에서 Geant4 code을 이용한 전산모사는 CT의 DICOM 파일을 이용하여 실제 인체의 해부학적 구조를 그대로 재현함으로써 정확한 선량계산을 할 수 있도록 하고 있다. 따라서, 본 연구에서는 유방조직 내 흡수선량을 계산하기 위해 Geant4 code를 이용한 전산모사를 실행하였고, Geant4가 제공하고 있는 DICOM 변환 파일을 이용함으로써 CT image data에서 표현된 인체구조를 시뮬레이션에 필요한 geometry로 변환하여 사용하였다. 또한 시뮬레이션에 의한 계산선량값(calculated dose)과 선량계(PTW ion chamber)를 이용한 측정선량 값(measured dose)을 비교함으로써 DICOM 파일을 연동한 Geant4의 선량계산이 유용한지를 검증하고자 하였다. 그 결과 28 kVp, 190 mAs의 조건에서 선량계를 이용한 측정선량 값과 시뮬레이션에 의해 계산된 선량 값의 오차백분율은 0.08 %에서 0.33 %인 것으로 조사되었고, 28 kVp, 70 mAs에서 선량 값의 오차백분율은 0.01 %에서 0.16 %의 결과를 보여 허용오차범위인 2 %이내의 결과를 나타내었다. 따라서 Geant4 시뮬레이션을 통한 흡수선량 계산은 유방촬영에서 유방 조직 내 흡수선량을 측정함에 유용한 것으로 조사되었다.

가중 퍼텐셜에 기초한 CT용 CdZnTe 소자 설계 (CdZnTe Detector for Computed Tomography based on Weighting Potential)

  • 임현종;박찬선;김정수;김정민;최종학;김기현
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제39권1호
    • /
    • pp.35-42
    • /
    • 2016
  • CdZnTe(CZT)는 상온에서 동작 가능한 II-VI족 기반의 화합반도체로 CT (Computed Tomography)나 맘모그라피 (mammography)용 검출기로 적용하면, 환자의 피폭선량을 저감할 수 있는 획기적인 소자재료이다. 픽셀(pixel)과 픽셀 피치(pixel pitch)에 따라 X선 변환효율과 신호 교차 (cross-talk)에 영향을 주어 영상 품질이 결정된다. 가중 퍼텐셜 (weighting potential)은 전극의 위치와 형태에 의해서 결정지어지는 가상 퍼텐셜로 Poisson's 방정식의 해를 통해서 구할 수 있다. 본 연구에서는 컴퓨터 기반의 모의실험을 통해 가상 퍼텐셜을 계산하고, 전하유도효율(CIE; charge induction efficiency)과 신호교차를 고려하여 CT용 센서에 적합한 픽셀을 결정하고자 하였다. 모의실험에서 1 mm의 픽셀피치와 2 mm 두께의 CZT를 가정하여, 다양한 픽셀과 픽셀피치를 설정 후 가중 퍼텐셜을 계산하였다. 픽셀의 크기가 $750{\mu}m$이고 픽셀간의 간격이 $250{\mu}m$일 때 최대 전하유도 효율과 최소 신호교차를 나타내었다.