• Title/Summary/Keyword: mammary epithelial cell

Search Result 86, Processing Time 0.022 seconds

Generation and analysis of whole-genome sequencing data in human mammary epithelial cells

  • Jong-Lyul Park;Jae-Yoon Kim;Seon-Young Kim;Yong Sun Lee
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.11.1-11.5
    • /
    • 2023
  • Breast cancer is the most common cancer worldwide, and advanced breast cancer with metastases is incurable mainly with currently available therapies. Therefore, it is essential to understand molecular characteristics during the progression of breast carcinogenesis. Here, we report a dataset of whole genomes from the human mammary epithelial cell system derived from a reduction mammoplasty specimen. This system comprises pre-stasis 184D cells, considered normal, and seven cell lines along cancer progression series that are immortalized or additionally acquired anchorage-independent growth. Our analysis of the whole-genome sequencing (WGS) data indicates that those seven cancer progression series cells have somatic mutations whose number ranges from 8,393 to 39,564 (with an average of 30,591) compared to 184D cells. These WGS data and our mutation analysis will provide helpful information to identify driver mutations and elucidate molecular mechanisms for breast carcinogenesis.

Expression of ErbB receptors in the pre-pubertal and pubertal virgin mammary glands of dairy cows

  • Lee, Byung-Woo;Kim, Yo-Han;Jeon, Byung-Suk;Singh, Naresh Kumar;Kim, Won-Ho;Kim, Meing-Jooung;Yoon, Byung-Il
    • Korean Journal of Veterinary Research
    • /
    • v.52 no.4
    • /
    • pp.269-273
    • /
    • 2012
  • In the present study, we investigated the expression patterns of ErbB family proteins in the pre-pubertal and pubertal mammary glands of dairy cows in association with gland development. For this study, we performed immunohistochemistry for ErbB-1-4 and Ki-67 cell proliferation marker. We found that the pre-pubertal and pubertal mammary glands had typical structures, including ducts and terminal end buds embedded in the stroma, and no development of lobuloalveolar structures. On immunohistochemistry, ErbB-2 and ErbB-3 were strongly expressed in the cytoplasm and nuclei in the epithelial cells of mammary ducts and terminal end buds, and stromal cells, whereas ErbB-1 and ErbB-4 were weakly expressed only in the cytoplasm of gland epithelium and stromal cells, irrespective of the developmental stage. Cell proliferation was inactive in the mammary gland cell compartments in both phases. Thus, expression of the ErbB family in the developing mammary glands was not associated with their functional effects, such as cell proliferation and lobuloalveolar development. In conclusion, ErbB receptors were differentially expressed in the epithelial and stromal cells of virgin mammary glands of dairy cows. Compared with rodent mammary glands, ErbB-3 and ErbB-4 were found to be highly expressed in bovine mammary glands.

Establishment and characterization of porcine mammary gland epithelial cell line using three dimensional culture system (3차원 배양 시스템을 이용한 돼지 유선 상피 세포 주 특성과 설정)

  • Chung, Hak-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.551-558
    • /
    • 2017
  • To study and validate tissue-specific promoters and vectors, it is important to develop cell culture systems that retain the tissue and species specificity. Such systems are attractive alternatives to transgenic animal models. This study established a line of porcine mammary gland epithelial cells (PMECs) from a primary culture based on the cellular morphology and mRNA levels of porcine beta-casein (CSN2). The selected PMECs were stained with the cytokeratin antibody, and were shown to express milk protein genes (CSN2, lactoferrin, and whey acidic protein). In addition, to confirm the acini structure of PMEC932-7 in 3D culture, live cells were stained with SYTO-13 dye, which binds to nucleic acid. The acini of these PMECs on matrigel were formed by the aggregation of peripheral cells and featured a hollow lumens. The system was demonstrated by testing the effects of the culture conditions to cell culture including cell density and matrigel methods of the PMECs. These results suggest that PMECs possess the genetic and structural features of mammary epithelial cells.

Persistence of Stem-like Cells in Glandular Structures in Mammary Cell Grafts (유선상피세포 이식편으로부터 생성된 유선구조물 내의 상피간세포 지속성 연구)

  • ;;Kelly H. Clifton
    • Journal of Life Science
    • /
    • v.10 no.1
    • /
    • pp.22-36
    • /
    • 2000
  • The mammary gland contains a subpopulation of epithelial cells with large proliferative potentials which are the likely targets for carcinogens. These clonogenic cells can proliferate and differentiate into functional glandular structures. Multicellular secretory alveolar units (AU) develop from these clonogens in grafts of monodispersed rat mammary epithelial cells (RMEC) in gland-free mammary fat pads in intact recipient F344 rats co-grafted with mammotropic hormone-secreting pituitary tumors (MtT F4). Multicellular nonsecretory ductal units (DU) develop in grafts of monodispersed RMEC in gland-free fat pads in adrenalectomized recipient WF rats co-grafted with MtT W10. However, this effect were reversed by hydrocortisone replacement therapy. RMEC were isolated from appropriate donor rats as monodispersed mixed cells or, alternatively, RNA+ cells were sorted by flow cytometry of mixed RMEC stained with FITC-RNA and PE-anti-Thy-1.1 monoclonal antibody. We grafted mixed or sorted PNA+ cells in gland-free mammary fat pads in recipient rats that were endocrinologically manipulated to induce AU or DU. Cells were also isolated from these AU or DU as mixed or sorted RNA+ cells and sub-transplanted in recipient rats treated appropriately to induce AU or DU, respectively. Cells obtained from AU in grafts gave rise to clonal AU and from DU in grafts to DU on sub-transplantation in appropriate recipients. When adrenalectomized recipient WF rats co-grafted with MtT W10 received daily subcutaneous injections of hydrocortisone for periods of 21 days following the PHA+ cell transplantation, AU, instead of DU, were developed. The histologies of these secondary AU and DU were not different from those of the primary AU and DU. Casein and laminin proteins were demonstrated by immunocytochemical staining of primary and secondary AU. Electron micrographs also demonstrated that AU were composed of secretory cells with milk protein in the cytoplasm. DU were composed of little or non-secretory ductal epithelial cells. These AU and DU also secreted large amounts of lipids. Clonogenic cells were more common in DU than in AU. Thus, AU and DU contain persistent subpopulations of clonogenic stem-like cells.

  • PDF

Expression of B Cell Activating Factor Pathway Genes in Mouse Mammary Gland

  • Choi, S.;Jung, D.J.;Bong, J.J.;Baik, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.2
    • /
    • pp.153-159
    • /
    • 2007
  • In our previous study, overexpression of extracellular proteinase inhibitor (Expi) gene accelerated apoptosis of mammary epithelial cells, and induced expression of B cell activating factor (BAFF) gene. In this study, we found induction of BAFF-receptor (BAFF-R) gene expression in the Expi-transfected cells. A proliferation-inducing ligand (APRIL) gene is another TNF family member and the closest known relative of BAFF. We found induction of APRIL gene expression in the Expi-overexpressed apoptotic cells. NF-${\kappa}$B gene was also induced in the Expi-overexpressed cells. Expression patterns of BAFF and APRIL pathway-related genes were examined in in vivo mouse mammary gland at various reproductive stages. Expression levels of BAFF gene were very low at early pregnancy, increased from mid-pregnancy, and peaked at lactation, and thereafter decreased at involution stages of mammary gland. Expression of BAFF-R gene was highly induced in involution stages compared to lactation stages. Thus, expression patterns of BAFF-R gene were correlated to apoptotic status of mammary gland: active apoptosis of mammary epithelial cells occurs at involution stage of mammary gland. Expression levels of NF-${\kappa}$B gene were higher in involution stages compared to lactation stages. We analyzed mRNA levels of bcl-2 family genes from different stages of mammary development. Bcl-2 gene expression was relatively constant during lactation and involution stages. There was a slight increase in bcl-xL gene expression in involution stages compared to lactation state. Bax gene expression was highly induced in involution stage. Our results suggest that signaling pathways activated by both BAFF and ARRIL in mammary gland point towards NF-${\kappa}$B activation which causes upregulation of bax.

Examination of the xanthosine response on gene expression of mammary epithelial cells using RNA-seq technology

  • Choudhary, Shanti;Li, Wenli;Bickhart, Derek;Verma, Ramneek;Sethi, R.S.;Mukhopadhyay, C.S.;Choudhary, Ratan K.
    • Journal of Animal Science and Technology
    • /
    • v.60 no.7
    • /
    • pp.18.1-18.12
    • /
    • 2018
  • Background: Xanthosine treatment has been previously reported to increase mammary stem cell population and milk production in cattle and goats. However, the underlying molecular mechanisms associated with the increase in stem cell population and milk production remain unclear. Methods: Primiparous Beetal goats were assigned to the study. Five days post-partum, one mammary gland of each goat was infused with xanthosine (TRT) twice daily ($2{\times}$) for 3 days consecutively, and the other gland served as a control (CON). Milk samples from the TRT and CON glands were collected on the 10th day after the last xanthosine infusion and the total RNA was isolated from milk fat globules (MEGs). Total RNA in MFGs was mainly derived from the milk epithelial cells (MECs) as evidenced by expression of milk synthesis genes. Significant differentially expressed genes (DEGs) were subjected to Gene Ontology (GO) terms using PANTHER and gene networks were generated using STRING db. Results: Preliminary analysis indicated that each individual goat responded to xanthosine treatment differently, with this trend being correlated with specific DEGs within the same animal's mammary gland. Several pathways are impacted by these DEGs, including cell communication, cell proliferation and anti-microbials. Conclusions: This study provides valuable insights into transcriptomic changes in milk producing epithelial cells in response to xanthosine treatment. Further characterization of DEGs identified in this study is likely to delineate the molecular mechanisms of increased milk production and stem or progenitor cell population by the xanthosine treatment.

Growth and Differentation of Rat Mammary Epithelial Cells Cultured in Serum-free Medium

  • Kim, Dong-Yeum;Jhun, Byung-Hak;Lee, Kyung-Hee;Hong, Seung-Chul;Clifton, Kelly-H.;Kim, Nam-Deuk
    • Archives of Pharmacal Research
    • /
    • v.20 no.4
    • /
    • pp.297-305
    • /
    • 1997
  • A new serum-free defined medium was developed that supports the growth of normal rat mammary epithelial cells. Mammary organoids from the glands of female F344 rats were cultured in a serum-free medium. Monolayer culture colonies developed within a week and remained viable for months in culture. Upon subculture of one-week-old primary colonies, almost the same morphology of colonies was developed. The scrape loading/dye transfer technique showed that most of colonies that developed in a serum-free medium containing EGF, human transferrin, insulin, and hydrocortisone (basal serum-free medium, BSFM) failed to show cell-cell communication. However, colonies cultured in BSFM supplemented with prolactin, $E_2$, and progesterone (complete hormone serum-free medium, CHSFM) showed cell-cell communication at 14 days of primary culture or of subculture. By flow cytometry with FITCPNA and PE-anti-Thy-1.1 monoclonal antibody, we distinguished four RMEC subpopulations in cultures in both media: Thy-1.1+ cells, PNA+ cells, cells negative to both reagents and cells positive to both reagents. It is likely that combined prolactin, cortisol, and insulin in CHSFM stimulate terminal differentiation of clonogenic cells.

  • PDF

Kv1.3 voltage-gated K+ channel subunit as a potential diagnostic marker and therapeutic target for breast cancer

  • Jang, Soo-Hwa;Kang, Kyung-Sun;Ryu, Pan-Dong;Lee, So-Yeong
    • BMB Reports
    • /
    • v.42 no.8
    • /
    • pp.535-539
    • /
    • 2009
  • Voltage-gated $K^+$ (Kv) channels are widely expressed in the plasma membranes of numerous cells such as epithelial cells. Recently, it has been demonstrated that Kv channels are associated with the proliferation of several types of cancer cells. Specifically, Kv1.3 seems to be involved in cancer cell proliferation and apoptosis. In the present study, we examined the expression of Kv1.3 in immortalized and tumorigenic human mammary epithelial cells. We also evaluated the expression level of Kv1.3 in each stage of breast cancer using mRNA isolated from breast cancer patients. In addition, treatment with tetraethylammonium, a Kv channel blocker, suppressed tumorigenic human mammary epithelial cell proliferation. Therefore, Kv1.3 may serve as a novel molecular target for breast cancer therapy while its stage-specific expression pattern may provide a potential diagnostic marker for breast cancer development.

Regeneration of Bovine Mammary Gland in Immunodeficient Mice by Transplantation of Bovine Mammary Epithelial Cells Mixed with Matrigel

  • Park, Hyun Jung;Lee, Won Young;Jeong, Ha Yeon;Song, Hyuk
    • International Journal of Stem Cells
    • /
    • v.9 no.2
    • /
    • pp.186-191
    • /
    • 2016
  • Background and Objectives: With the global demand for dairy protein for consumption growing annually, there has been increasing activity in the research field of dairy protein synthesis and production. From a manipulation perspective, it is more difficult to use live cattle for laboratory studies on the production of milk as well as of dairy protein such as casein, as compared with using laboratory animals like rodents. Therefore, we aimed to develop a mouse model of bovine mammary alveolar ducts for laboratory-scale studies. We studied the formation of the bovine mammary gland ductal structure by transplanting the MAC-T bovine alveolar cell line into mice. Methods and Results: MAC-T cells ($1{\times}10^7$) were suspended in Matrigel and injected into the dorsal tissue of 8-week-old male BALB/C nude mice. Histological analysis of tissue dissected from the MAC-T cell-transplanted mice after 6 weeks showed the typical morphology of the tubuloalveolar female gland, as well as glands made up of branching ducts that were surrounded by smooth muscle with small alveoli budding off the ducts. In addition, the epithelial markers CK14 and CK18 were expressed within the duct-like structure. Prolactin was detected in the duct interior in these CK14+ and CK18+ cells but not in the non-transplanted MAC-T cells. Conclusions: These results showed that duct-like tissue had been successfully formed after 6 weeks of transplantation of the CK14+ and CK18+ MAC-T cells into mice dorsal tissue. This mouse model will be a useful tool for further research on the bovine mammary gland.

Induction of Differentiation of the Cultured Rat Mammary Epithelial Cells by Triterpene Acids

  • Paik, Kee-Joo;Jeon, Seong-Sill;Chung, Hae-Young;Lee, Kyung-Hee;Kim, Kyu-Won;Chung, Joon-Ki;Kim, Nam-Deuk
    • Archives of Pharmacal Research
    • /
    • v.21 no.4
    • /
    • pp.398-405
    • /
    • 1998
  • We investigated the effects of triterpene acids (TAs), ursolic acid (UA) and oleanolic acid (OA), on the induction of proliferation and differentiation of normal rat mammary epithelial cells (RMEC) or organoids cultured in Matrigel or primary culture system. To elucidate the effects, we tested their differentiation inducing activities with intercellular communication ability, cell cycle patterns, induction of apoptosis, and morphological differentiation in the three dimensional extracellular culture system. To study the changes of RMEC subpopulation in culture, the cultured cells were isolated, immunostained with peanut lectin (PNA) and anti-Thy-1.1 antibody and then analyzed with flow cytometry. Four different subpopulations, such as PNA and Thy-1.1 negative cells (B-), PNA positive cells (PNA+), Thy-1.1 positive cells (Thy-1.1+), PNA and Thy-1.1 positive cells (B+), were obtained and the size of each subpopulation was changed in culture with time in the presence of TAs. Intercellular communication was observed in culture for 7 days in TAs-treated cells, but not in culture for 4 days with scrape-loading dye transfer technique. $G_2$/M phase cells and the number of apoptotic population were increased in TAs-treated groups in cell cycle analyses. S phase fractions were reduced and the change of $G_1$ phase cells was not observed. The colonies with distinct multicelfular structures, such as stellate, ductal, webbed, squamous, lobulo-ductal colonies, were observed in Matrigel culture and the frequencies of each colony were changed in the presence of TAs. These results suggest that UA and OA have differentiation inducing effects on rat mammary epithelial cells in primary or in Matrigel culture.

  • PDF