A bacterial strain KSM-35 producing maltotetraose forming amylase was isolated from compost and identified as Streptomyces based on its morphological, cultural, and physiological characteristics. The amylase from Streptomyces sp. KSM-35 culture filtrate was purified by ammonium sulfate precipitation, followed by the liquid chromatographic procedures using DEAE-Toyo pearl and sephadex G-100 with 27.1% activity recovery. The molecular weight of the enzyme was estimated to be 50,000 and the isoelectric point 4.3. The main product by the amylase from soluble starch was maltotetraose which accounted for 56% of all the oligosaccharides detected after 26 hrs of reaction. Maltose (20%o) and maltotriose (16%) were the next important byproducts while glucose and maltopentaose were detected as traces.
KIM, DAE-OK;KYUNGMOON PARK;JAE-WOOK SONG;JIN-HO SEO
Journal of Microbiology and Biotechnology
/
v.7
no.6
/
pp.417-422
/
1997
Recombinant Bacillus subtilis LKS88[pASA240] containing the amylase gene from Streptomyces albus KSM-35 was exploited in fed-batch cultivation for mass production of maltotetraose-producing amylase. The effects of dissolved oxygen, additional organic nutrients (peptone and yeast extract) and mixed carbon sources (glucose plus soluble starch) on amylase production were examined in fed-batch operations in an effort to determine the optimum conditions for a maximum amylase productivity. Under the optimum conditions, maximum amylase activity was about 4.2 times higher than that obtained in batch cultivations, indicating that mass production of maltotetraose-producing amylase could be accomplished in fed-batch cultivation of the recombinant B. subtilis strain.
These experiments were conducted to investigate the hydrolysis products on the various oligosaccharides of Bacillus cirulans F-2 $\alpha$-amylase, and the hydrolysis rate on the various raw starches of Bacillus circulans F-2 $\alpha$-amylase, Bacillus amylotiquefaciens $\alpha$-amylase and Rhizopus niveus glucoamylase. The results obtained were as follows : 1. Maltotetraose, maltopentaose, maltohexaose, maltoheptaose and maltooctaose were hydrolyzed, but maltose and maltotriose were not hydrolyzed by Bacillus circulans F-2 $\alpha$-amylase. Among maltotetraose, maltopentaose, maltohexaose, maltoheptaose and maltooctaose, especially maltotetraose was hydrolyzed weakly by Bacillus circulans F-2 $\alpha$-amylase. 2. The Hydrolysis rate of oyster glycogen was slightly lower than soluble starch, amylose and amylopectin. 3. The hydrolysis rate of com starch was higher in shaking incubation than in stationary incubation, but the hydrolysis rate of potato starch was not definite according to kinds of enzyme. 4. On com, rice, arrowroot, high amylose corn, banana, sago, yam and potato starch, Bacillus circulans F-2 $\alpha$-amylase exhibited a remarkably higher hydrolysis rate than Bacillus amyloquefaciems $\alpha$-amylase and Rhizopus niveus glucoamylase.
Exo-maltotetraohydrolase produced by Pseudomonas stutzeri IAM 12097 was characterized with respect to substrate specificity, the reaction products and hydolysis rate on various carbohydrates. Maltopentaose, maltoheptaose, soluble starch, amylose, amylopectin, oyster glycogen and gelatinized starch of corn, potato, glutinous rice, green banana and arrow root were hydolyzed by this enzyme, but ${\alpha},{\beta},{\gamma}-cyclodextin$, sucrose, raffinose, lactose, pullulan, maltose, maltotriose and maltotetraose were not hydrolyzed. Among oligosaccharides, maltohexaose was favorably hydrolyzed by this enzyme and the main reaction product of oligosaccharides and polysaccharides was maltotetraose. Addition of pullulanase to this enzyme increased the hydolysis rate on gelatinized starches. tut it did not on raw starches. Among various starches, corn starch was favorably hydrolyzed by this enzyme, whereas it acted on potato starch, arrow root starch and high amylose corn starch weakly.
Alkali metal salts were introduced to enhance the ionization efficiency of glucose and maltooligoses in electrospray ionization-mass spectrometry (ESI-MS). A mixture of the same moles of glucose, maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose, and maltoheptaose was used. Salts of lithium, sodium, potassium, and cesium were employed as the cationizing agent. The ionization efficiency varied with the alkali metal cation types as well as the analyte sizes. Ion abundance distribution of the [M+$cation]^+$ ions of the carbohydrates varied with the fragmentor voltage. The maximum ion abundance at low fragmentor voltage was observed at maltose, while the maximum ion abundance at high fragmentor voltage shifted to maltotriose or maltotetraose for Na, K, and Cs. Variation of the ionization efficiency was explained with the hydrated cation size and the binding energy of the analyte and alkali metal cation.
The effects of carbon sources on vancomycin production were investigated using Nocardia orientalis CSVC 3300. Among carbon sources tested, glucose, maltose and fructose were effective for the production of vancomycin. Glucose was favored for growth, but decrease the production of vancomycin at the concentration above 7.5%. In comparison, maltose did not decrease the production of vancomycin up to the concentration of 20%. When the mixture of glucose and maltose was used in the ratio 1:3 to 1:4, the highest production of vancomycin was achieved. When glucose concentration was set at 3.0%, catabolite repression could not be observed up to total sugar concentration of 16.0%. Fermentation was carried out using commercial hydrolyzed starch composed of glucose, maltose, maltotriose and maltotetraose, The initial glucose concentration was set at 3.0% and subsequent oligosaccharide consumption was monitored by checking their supernatant with HPLC. During initial cultivation for 38 hour, glucose was the sole carbon source leading to rapid growth. After cell growth stopped, the maltose and glucose concentrations increased due to degradation of maltotriose and maltotetraose, but glucose level was maintained at around 3.0%. After 70 hour fermentation, maltose slowly converted to glucose, and vancomycin production continued during the period.
Park, Geun-Woo;Kim, Myoung-Dong;Ahn, Jang-Woo;Kim, Young-Bae;Seo, Jin-Ho
Korean Journal of Food Science and Technology
/
v.30
no.6
/
pp.1426-1431
/
1998
The research was undertaken to characterize enzymatic properties of Streptomyces albus amylase expressed in recombinant Bacillus subtilis. Molecular weight and pI of the purified enzyme were estimated to be 50 kD by SDS-PAGE and 4.3 by isoelectric focusing. The optimum temperature and optimum pH were $45^{\circ}C$ and 6.0, respectively. D-and Z-value were estimated to measure thermostability of the purified enzyme. The Z-value was estimated $17.7^{\circ}C$, which is lower than typical amylase. Maltotetraose was produced as a major component from soluble starch in the early state of reaction but gradually degraded to maltose. Thin layer chromatography was also performed to analyze the reaction products. The parameters involved in Michaelis-Menten enzyme kinetics were found to be the maximum velocity of 0.37 mM/min and the Michaelis constant of 0.13%, respectively.
A bacterial strain was isolated from soybean paste fermented in a Korean Buddhist temple as a producer of the extracellular thermostable ${\alpha}$-amylase. The isolate YB-1234 has been identified as Bacillus licheniformis on the basis of its 16S rDNA sequence, morphology and biochemical properties. A gene encoding the thermostable ${\alpha}$-amylase of B. licheniformis YB-1234 was cloned into Escherichia coli and its nucleotide sequence was determined. The deduced amino acid sequence of ${\alpha}$-amylase was very highly homologous to those of the thermostable ${\alpha}$-amylases of B. licheniformis belonging to the glycosyl hydrolase family 13. The ${\alpha}$-amylase produced by recombinant E. coli carrying the ${\alpha}$-amylase gene exhibited maximal activity at pH 6.0, identical to ${\alpha}$-amylase in the culture filtrate of B. licheniformis, while the temperature profile was somewhat different between the two. Particularly, ${\alpha}$-amylase produced from B. lcheniformis is much more thermostable than that from recombinant E. coli. The predominant products resulting from the ${\alpha}$-amylase hydrolysis were glucose, maltose and maltotriose for maltotetraose and maltohexaose.
The indigestible dextrin with high indigestible fraction was prepared by treating the enzyme hydrolysate of pyrodextrin with ethanol or strongly acidic cation exchange resin(UBK 530). Optimum conditions of ethanol treatment for preparing the indigestible dextrin from $\alpha-amylase$ and amyloglucosidase treated hydrolysate were determined based on the indigestible fraction, dietary fiber content, and yield. Ethanol was added 5-fold by weight to 30%(w/w) enzyme hydrolysate, and the mixture was kept at room temperature for 3 hr. Low molecular weight saccharides containing glucose and high molecular weight saccharides were separated by strongly acidic cation exchange resin. While initial enzyme hydrolysate by $\alpha-amylase$ and amyloglucosidase showed 43.6% of DPI(glucose) and 51.1% of DP4+(maltotetraose and over), the indigestible dextrin collected to 50% of initial enzyme hydrolysate by treatment of cation exchange resin showed 7.1% of DPI(glucose) and 91.2% of DP4+(maltotetraose and over). In conclusion, 44.5% of indigestible fraction of initial enzyme hydrolysate increased to 78.9% after separation of low molecular weight saccharides.
We isolated a bacterium that produces an extracellular maltopentaose(G5)-forming amylase from amylose and soluble starch. The bacterium was identified and assigned as a Bacillus sp. AIR-5. The amylase did not hydrolyze maltose, maltotriose, maltotetraose or maltopentaose. Optimum medium composition for maltopentaose production in flask culture was 2%(w/v) soluble starch, 0.4%(w/v) tryptone, 0.5%(w/v) NaCl, 0.5%(w/v) K$_2$HPO$_4$, and 3 mM CaCl$_2$at pH 8.0, 28$^{\circ}C$. The highest yield for maltopentaose production in this condition was 6.45 g/L and was 32.55% of theoretical yield.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.