• Title/Summary/Keyword: malt

Search Result 506, Processing Time 0.03 seconds

A New Malting Barley Variety, "Daho" with High Yielding and BaYMV Resistance (맥주보리 호위축병저항성 및 다수성 "다호")

  • Hyun, Jong-Nae;Kim, Mi-Jung;Kim, Yang-Kil;Lee, Mi-Ja;Choi, Jae-Sung;Kim, Hyun-Tae;Han, Sang-Ik;Ko, Jong-Min;Lim, Sea-Gyu;Park, Jong-Chul;Kim, Jung-Gon;Suh, Sae-Jung;Kim, Dae-Ho;Kang, Sung-Ju;Kim, Sung-Taeg
    • Korean Journal of Breeding Science
    • /
    • v.41 no.3
    • /
    • pp.333-337
    • /
    • 2009
  • A new malting barley variety, "Daho", was developed from the cross between "Milyang85 and Suwon335" at the Department of Rice and Winter Cereal Crop (DRWCC) NICS, in 2007. An elite line, YMB2064-B-8-2-4-1-1, was selected in 2004 and designated as "Milyang134". It showed good agronomic performance in the regional adaptation yield trials (RYT) from 2005 to 2007 and was released with the name of "Daho", having high yielding and BaYMV resistance. The average heading and maturing dates of "Daho" were April 19 and May 27, which were 2 days later and 1 day earlier than those of "Jinyang", leading variety, at the regional adaptation yield trials (RYT), respectively. "Daho" had longer culm length (84 cm), more spikes per $m^2$ (915) and higher 1,000 grain weight (39.2 g) than those of "Jinyang" in paddy field condition. "Daho" was showed resistance to BaYMV at the regions of Naju, Jinju, and Milyang but moderately resistance at Iksan. However, the response of "Daho" to other environmental stresses was similar to "Jinyang". The yields of "Daho" at upland and paddy fields were about 5.20 MT/ha, 4.81 MT/ha, respectively, which is about 38%, 25% higher than those of "Jinyang" in the regional adaptation yield trials (RYT), respectively. It has higher grain assortment, germination capacity, water sensitivity and Kolback index but lower malt extract, diastatic power and filtration speed than those of "Jinyang".

Isolation of Wild Yeasts from the Water and Riverside Soil of Geumgang Midstream in Sejong City, Korea, and Characterization of Unrecorded Wild Yeasts (세종특별자치시 주변의 금강 중류 물과 토양에서 야생 효모의 분리 및 국내 미기록 효모의 특성)

  • Han, Sang-Min;Kim, Ji-Yoon;Lee, Jong-Soo
    • The Korean Journal of Mycology
    • /
    • v.47 no.1
    • /
    • pp.51-61
    • /
    • 2019
  • The goal of this study was to elucidate wild yeast diversity of Geumgang midstream near Sejong metropolitan autonomous city, Korea. Thirty-seven strains of 32 species of wild yeasts were isolated from 43 water and soil samples under the Bulti bridge of Sejong city, Korea. Seven yeasts of each Candida spp. and Cryptococcus spp. were the predominant species isolated from samples near the Bulti bridge. Holtermanniella takashimae SW048 (NNIBRFG9314), Cystofilobasidium infirmominiatum SW013 (NNIBRFG9310), Mrakia cryoconite SW015 (NNIBRFG9316), Pichia sporocuriosa SW085 (NNIBRFG9326) and Cryptococcus aspenensis SW008 (NNIBRFG9309) represented novel yeast strains found in Korea for the first time. All of these previously unrecorded yeasts, except for Mrakia cryoconite SW015 had ascospores and grew well in yeast extract-peptone-dextrose (YPD), yeast extract-malt extract (YM) and potato-extrose (PD) media. Pichia sporocuriosa SW085 grew well in vitamin-free medium and Holtermanniella takashimae SW048, which was a halotolerant wild yeast, grew well YPD medium containing 5 % NaCl. Twenty-six strains representing eight species of wild yeast were isolated from 22 water and soil samples under the Haetmuri bridge of Sejong city, Korea. Candida pseudolambica (12 strains) and Aureobasidium pullulans (11 strains) were the predominant isolates from samples near the Haetmuri bridge. Occultifur kilbournensis HB060 (NNIBRFG9317), Sampaiozyma vanillica HB014 (NNIBRFG9332), Xenoramularia neerlandica HB039 (NNIBRFG9335), Candida norvegica HB315 (NNIBRFG9306), C. melibiosica HB316 (NNIBRFG9305), C. quercuum GB014 (NNIBRFG9307), and C. succiphila GB015 (NNIBRFG9308) represented novel yeast strains recorded in Korea for the first time. O. kilbournensis HB060 and X. neerlandica HB039 did not form ascospores or pseudo-mycelia. All of these previously unrecorded yeasts, except S. vanillica HB014 and X. neerlandica HB039, grew well in vitaminfree medium, and C. norvegica HB315 and C. succiphila GB015, which were halotolerant wild yeasts, which grew well in YPD medium containing 5 % NaCl.

Isolation of Wild Yeasts from Freshwaters and Soils in Nonsan Stream and Sapgyoho in Chungcheongnam-do, Korea, and Microbiological Characteristics of the Unrecorded Wild Yeasts (충남 논산천과 삽교호로부터 야생효모의 분리 및 국내 미기록 효모들의 균학적 특성)

  • Jang, Ji-Eun;Park, Seon-Jeong;Moon, Jeong-Su;Lee, Hyang Burm;Lee, Jong-Soo
    • The Korean Journal of Mycology
    • /
    • v.49 no.3
    • /
    • pp.337-349
    • /
    • 2021
  • This study aimed to isolate wild yeasts from water and soil sample of the Nonsan stream and Sapgyoho (lake) in Chungcheonnam-do, Korea, and to further characterize previously unrecorded wild yeast strains. In total, 102 strains, representing 55 different species of wild yeast were isolated from 95 samples collected from the Jangseoncheon and Ipchoncheon of Nonsan stream in Jellabuk-do and Chungcheonnam-do. Among these, 33 strains were isolated from alkalophilic yeast extract-peptone-dextrose (YPD) medium (pH 9.0), and 9 strains were isolated concurrently on general YPD medium (pH 6.5) and alkalophilic medium. Seventeen strains of Cryptococcus laurentii were predominantly isolated. Additionally, 65 strains, representing 27 different species of wild yeast were isolated from 58 samples obtained from Sapgyoho (lake). Among the 82 isolated wild yeast strains, 8 strains, including Candida fructus JSC 72-1(JSL-GGU 015), had not previously been recorded. All 8 previously unrecorded yeasts were oval in shape except C. fructus JSC72-1(JSL-GGU-015), and only the Filobasidium chernovii JSC39-1(JSL-GGU-013) strain formed spores. All strains except Pseudosydowia eucalypti JSC23-6(JSL-GGU-012) grew well in yeast extract-peptone-dextrose (YPD) and yeast extract-malt extract media and grew in vitamin-free medium. Four strains, including P.eucalypti JSC23-6(JSL-GGU-012) grew well in 15% NaCl-containing YPD medium. F.chernovii JSC39-1(JSL-GGU-013) and Sirobasidium intermedium JSC7-3(JSL-GGU-014) assimilated lactose, and five strains, including F. chernovii JSC39-1(JSL-GGU-013) also assimilated starch. All strains were resistant to 800 ppm of Ca, Cu, Li, and Mg ions.

'Neulchan', a Middle-seed, Disease-resistant, and High-yield Soybean Cultivar for Soy-paste and Tofu (중립 내병 다수성 장류·두부용 콩 '늘찬')

  • Kim, Hyun Tae;Ko, Jong Min;Baek, In Youl;Han, Won Young;Yun, Hong Tai;Lee, Byoung Won;Shin, Sang Ouk;Seo, Jeong Hyun;Kim, Hong Sik;Kwak, Do Yeon
    • Korean Journal of Breeding Science
    • /
    • v.51 no.4
    • /
    • pp.475-481
    • /
    • 2019
  • The soybean cultivar 'Neulchan' was developed for production of soy-paste and tofu. SS91501-9-1-1 and SS96205 (F2) were crossed in 1998, and F3 to F7 were selected by the pedigree method. A preliminary yield trial (PYT) and an advanced yield trial (AYT) were conducted from 2006 to 2008, and a regional yield trial (RYT) in nine regions was conducted from 2009 to 2011. In the RYT, 'Neulchan' was stable in variable environments and generated high yield. 'Neulchan' was determinate with white flower, light brown pod color, yellow spherical seed, and yellow hilum. Its flowering date and maturity date were Jul. 30 and Oct. 9, respectively. The plant height was shorter than that of 'Daewonkong' (a standard cultivar). 'Neulchan' had the same node number (14), higher first-pod height (12 cm), and lighter seed weight (21.7 g/100-seed weight) than those of 'Daewonkong' (14, 11, and 24.2 g/100-seed weight, respectively). 'Neulchan' had high resistance to bacterial pustule, and its resistance to soybean mosaic virus was similar to that of 'Daewonkong'. The yield and color of 'Neulchan' tofu were similar to those of 'Daewonkong' tofu, but the hardness was lower than that of 'Daewonkong' tofu. The soybean malt scent, fermented soybean yield, and γ-polyglutamic acid (γ-PGA) of 'Neulchan' were 3, 215%, and 24.6 mg/g, respectively. Its yield in adaptable regions was 307 kg/10a, higher than that of 'Daewonkong'. 'Neulchan' was expected to be cultivated and used widely for soy-paste and tofu production. (Registration No. 4904).

Adaptability of the high first pod height, shattering-resistant soybean cultivar 'Saegeum' to mechanized harvesting (고착협 내탈립 기계수확 적응 장류·두부용 콩 품종 '새금')

  • Kim, Hyun Tae;Han, Won Young;Lee, Byung Won;Ko, Jong Min;Lee, Yeong Hoon;Baek, In Youl;Yun, Hong Tai;Ha, Tae Joung;Choi, Man Soo;Kang, Beom Kyu;Kim, Hyun Yeong;Seo, Jeong Hyun;Kim, Hong Sik;Shin, Sang Ouk;Oh, Jae Hyun;Kwak, Do Yeon;Seo, Min Jeong;Song, Yoon Ho;Jang, Eun Kyu;Yun, Geon Sik;Kang, Yeong Sik;Lee, Ji Yun;Shin, Jeong Ho;Choi, Kyu Hwan;Kim, Dong Kwan;Yang, Woo Sam
    • Korean Journal of Breeding Science
    • /
    • v.51 no.4
    • /
    • pp.496-503
    • /
    • 2019
  • The soybean cultivar, 'Saegeum', has been developed for preparing soy-paste and tofu. The soybean cultivars 'Daepung' and 'SS98207-3SSD-168' were crossed in 2003 to obtain 'Saegeum'. Single seed descent method was used to advance the generation from F3 to F5, and the plant lines with promising traits were selected from F6 to F7 by pedigree method. The preliminary yield (PYT) and advanced yield trials (AYT) were conducted from 2009 to 2010, and the regional yield trial (RYT) was conducted in 12 regions between 2011 and 2013. The morphological characteristics of 'Saegeum' were as follows: determinate plant type, white flower, tawny pubescence color, and brown pod color. Flowering and maturity dates were August 2, XXXX and October 17, XXXX, respectively. Plant height, first pod height, number of nodes, number of branches, and number of pods were 79 cm, 18 cm, 16, 2.3, and 44, respectively. The seed characteristics of 'Saegeum' were as follows: yellow spherical shape, yellow hilum, and the 100-seed weight was 25.4 g. 'Saegeum' was resistant to bacterial pustule and SMV in the field test, and its lodging resistance was mildly strong, whereas its shattering resistance was excellent. The ability of this cultivar to be processed into tofu, soybean malt, and other fermented products was comparable with that of 'Daewonkong'. The yield of 'Saegeum' in the adaptable regions was 3.02 ton ha-1. Thus, 'Saegeum' is adaptable to mechanized harvesting because of its high first pod height, as well as lodging and shattering resistance. (Registration number: 5929)

Microbiological and Enzymological Studies on Takju Brewing (탁주(濁酒) 양조(釀造)에 관(關)한 미생물학적(微生物學的) 및 효소학적(酵素學的) 연구(硏究))

  • Kim, Chan-Jo
    • Applied Biological Chemistry
    • /
    • v.10
    • /
    • pp.69-100
    • /
    • 1968
  • 1. In order to investigate on the microflora and enzyme activity of mold wheat 'Nuruk' , the major source of microorganisms for the brewing of Takju (a Korean Sake), two samples of Nuruk, one prepared at the College of Agriculture, Chung Nam University (S) and the other perchased at a market (T), were taken for the study. The molds, aerobic bacteria, lactic acid bacteria, and yeasts were examined and counted. The yeasts were classified by the treatment with TTC (2, 3, 5 triphenyltetrazolium chloride) agar that yields a varied shade of color. The amylase and protease activities of Nuruk were measured. The results were as the followings. a) In the Nuruk S found were: Aspergillus oryzae group, $204{\times}10^5$; Black Aspergilli, $163{\times}10^5$; Rhizogus, $20{\times}10^5$; Penicillia, $134{\times}10^5$; Areobic bacteria, $9{\times}10^6-2{\times}10^7$; Lactic acid bacteria, $3{\times}10^4$ In the Nuruk T found were: Aspergillus oryzae group, $836{\times}10^5$; Black Aspergilli, $286{\times}10^5$; Rhizopus, $623{\times}10^5$; Penicillia, $264{\times}10^5$; Aerobic bacteria, $5{\times}10^6-9{\times}10^6$; Lactic acid bacteria, $3{\times}10^4$ b) Eighty to ninety percent of the aerobic bacteria in Nuruk S appeared to belong to Bacillus subtilis while about 70% of those in Nuruk T seemed to be spherical bacteria. In both Nuruks about 80% of lactic acid bacteria were observed as spherical ones. c) The population of yeasts in 1g. of Nuruk S was about $6{\times}10^5$, 56.5% of which were TTC pink yeasts, 16% of which were TTC red pink yeasts, 8% of which were TTC red yeasts, 19.5% of which were TTC white yeasts. In Nuruk T(1g) the number of yeasts accounted for $14{\times}10^4$ and constituted of 42% TTC pink. 21% TTC red pink 28% TTC red and 9% TTC white. d) The enzyme activity of 1g Nuruk S was: Liquefying type Amylase, $D^{40}/_{30},=256$ W.V. Saccharifying type Amylase, 43.32 A.U. Acid protease, 181 C.F.U. Alkaline protease, 240C.F.U. The enzyme activity of 1g Nuruk T was: Liquefying type Amylase $D^{40}/_{30},=32$ W.V. Saccharifying type amylase $^{30}34.92$ A.U. Acid protease, 138 C.F.U. Alkaline protease 31 C.F.U. 2. During the fermentation of 'Takju' employing the Nuruks S and T the microflora and enzyme activity throughout the brewing were observed in 12 hour intervals. TTC pink and red yeasts considered to be the major yeasts were isolated and cultured. The strains ($1{\times}10^6/ml$) were added to the mashes S and T in which pH was adjusted to 4.2 and the change of microflora was examined during the fermentation. The results were: a) The molds disappeared from each sample plot since 2 to 3 days after mashing while the population of aerobic bacteria was found to be $10{\times}10^7-35{\times}10^7/ml$ inS plots and $8.2{\times}10^7-12{\times}10^7$ in plots. Among them the coccus propagated substantially until some 30 hours elasped in the S and T plots treated with lactic acid but decreased abruptly thereafter. In the plots of SP. SR. TP. and TR the coccus had not appeared from the beginning while the bacillus showed up and down changes in number and diminished by 1/5-1/10 the original at the end stage. b) The lactic acid bacteria observed in the S plot were about $7.4{\times}10^7$ in number per ml of the mash in 24 hours and increased up to around $2{\times}10^8$ until 3-4 days since. After this period the population decreased rapidly and reached about $4{\times}10^5$ at the end, In the plot T the lactic acid becteria found were about $3{\times}10^8$ at the period of 24 fours, about $3{\times}10$ in 3 days and about $2{\times}10^5$ at the end in number. In the plots SP. SR. TP, and TR the lactic acid bacteria observed were as less as $4{\times}10^5$ at the stage of 24 hours and after this period the organisms either remained unchanged in population or ceased to exist. c) The maiority of lactic acid bacteria found in each mash were spherical and the change in number displayed a tendency in accordance with the amount of lactic acid and alcohol produced in the mash. d) The yeasts had showed a marked propagation since the period of 24 hours when the number was about $2{\times}10^8$ ㎖ mash in the plot S. $4{\times}10^8$ in 48 hours and $5-7{\times}10^8$ in the end period were observed. In the plot T the number was $4{\times}10^8$ in 24 hours and thereafter changed up and down maintaining $2-5{\times}10^8$ in the range. e) Over 90% of the yeasts found in the mashes of S and T plots were TTC pink type while both TTC red pink and TTC red types held range of $2{\times}10-3{\times}10^7$ throughout the entire fermentation. f) The population of TTC pink yeasts in the plot SP was as $5{\times}10^8$ much as that is, twice of that of S plot at the period of 24 hours. The predominance in number continued until the middle and later stages but the order of number became about the same at the end. g) Total number of the yeasts observed in the plot SR showed little difference from that of the plot SP. The TTC red yeasts added appeared considerably in the early stage but days after the change in number was about the same as that of the plot S. In the plot TR the population of TTC red yeasts was predominant over the T plot in the early stage which there was no difference between two plots there after. For this reason even in the plot w hers TTC red yeasts were added TTC pink yeasts were predominant. TTC red yeasts observed in the present experiment showed continuing growth until the later stage but the rate was low. h) In the plot TP TTC pink yeasts were found to be about $5{\times}10^8$ in number at the period of 2 days and inclined to decrease thereafter. Compared with the plot T the number of TTC pink yeasts in the plot TP was predominant until the middle stage but became at the later stage. i) The productivity of alcohol in the mash was measured. The plot where TTC pink yeasts were added showed somewhat better yield in the earely stage but at and after the middle stage the difference between the yeast-added and the intact mashes was not recognizable. And the production of alcohol was not proportional to the total number of yeasts present. j) Activity of the liquefying amylase was the highest until 12 hours after mashing, somewhat lowered once after that, and again increased around 36-48 hours after mashing. Then the activity had decreased continuously. Activity of saccharifying amylase also decreased at the period of 24 hours and then increased until 48 hours when it reached the maximum. Since, the activity had gradually decreased until 72 hours and rapidly so did thereafter. k) Activity of alkaline protease during the fermentation of mash showed a tendency to decrease continusously although somewhat irregular. Activity of acid protease increased until hours at the maximum, then decreased rapidly, and again increased, the vigor of acid protease showed better shape than that of alkaline protease throughout. 3. TTC pink yeasts that were predominant in number, two strains of TTC red pink yeasts that appeared throughout the brewing, and TTC red yeasts were identified and the physiological characters examined. The results were as described below. a) TTC pinkyeasts (B-50P) and two strains of TTC red pink yeasts (B-54 RP & B-60 RP) w ere identified as the type of Saccharomyces cerevisiae and TTC pink red yeasts CB-53 R) were as the type of Hansenula subpelliculosa. b) The fermentability of four strains above mentioned were measured as follows. Two strains of TTC red pink yeasts were the highest, TTC pink yeasts were the lowest in the fermantability. The former three strains were active in the early stage of fermentation and found to be suitable for manufacturing 'Takju' TTC red yeasts were found to play an important role in Takju brewing due to its strong ability to produce esters although its fermentability was low. c) The tolerance against nitrous acid of strains of yeast was marked. That against lactic acid was only 3% in Koji extract, and TTC red yeasts showed somewhat stronger resistance. The tolerance against alcohol of TTC pink and red pink yeasts in the Hayduck solution was 7% while that in the malt extract was 13%. However, that of TTC red yeasts was much weaker than others. Liguefying activity of gelatin by those four strains of yeast was not recognized even in 40 days. 4. Fermentability during Takju brewing was shown in the first two days as much as 70-80% of total fermentation and around 90% of fermentation proceeded in 3-4 days. The main fermentation appeared to be completed during :his period. Productivity of alcohol during Takju brewing was found to be apporximately 65% of the total amount of starch put in mashing. 5. The reason that Saccharomyces coreanuss found be Saito in the mash of Takju was not detected in the present experiment is considered due to the facts that Aspergillus oryzae has been inoculated in the mold wheat (Nuruk) since around 1930 and also that Koji has been used in Takju brewing, consequently causing they complete change in microflora in the Takju brewing. This consideration will be supported by the fact that the original flavor and taste have now been remarkably changed.

  • PDF