• Title/Summary/Keyword: malocclusion

Search Result 975, Processing Time 0.025 seconds

A Cephalometric study on tooth movement pattern of maxillary 6 anteriors with double keyhole loops (Double keyhole loop에 의한 상악 6전치의 후방견인시 치아이동양상에 관한 측모두부방사선계측학적 연구)

  • Kim, Hyun-Kyung;Park, Young-Guk
    • The korean journal of orthodontics
    • /
    • v.32 no.1 s.90
    • /
    • pp.9-18
    • /
    • 2002
  • The present study hypothesized that the double keyhole looped archwire plays a positive role for the sake of translatory movement and/or controlled tipping of upper 6 anteriors, and secures anchorage control as well. The purposes of the study were to evaluate the changes in lateral cephalograms during orthodontic treatment with DKHLs and to compare the skeletal & dental changes before- & after-treatment. The materials of this study were lateral cephalograms of 20 adult patients with upper dentoalveolar protrusion both in class I and in class II Division1 malocclusion. Lateral cephalograms were taken before and after orthodontic treatment with upper 1st bicuspid extraction and DKHLs. The results were obtained as follows : 1. There were no statistically significant differences in skeletal measurement except SNB and PTFH between before- & after-treatment. The major changes were in dentoalveolar region. 2. After treatment, there were statistically significant decrease in dental measurement except interincisal angle. 3. Both upper & lower lip protrusion was decreased. 4. There were statistically differences in upper anterior crown horizontal & root vertical dimension(7.08 ${\pm}$ 2.14 mm, 2.38 ${\pm}$ 1.15 mm, p<0.01). 5. There were statistically differences in upper posterior dental(both crown & root) horizontal dimension(2.48 ${\pm}$ 0.99 mm, 2.05 ${\pm}$ 0.91 mm, p<0.01).

SOFT TISSUE PROFILE CHANGE PREDICTION IN MAXILLARY INCISOR RETRACTION BASED ON CEPHALOMETRICS (두부방사선 분석에 의한 상악전치부 후방이동시 연조직 변화 예측에 대한 연구)

  • Choi, Jin-Hee;Lee, Jin-Woo;Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.27 no.1
    • /
    • pp.65-78
    • /
    • 1997
  • This study was carried out in order to determine soft tissue response to incisor movement and mandibular repositioning and to determine feasibility of predicting vertical and horizontal changes in soft tissue with hard tissue movement. For this study, cephalometric records of 41 orthodontically treated adult females who had Angle's Class II division 1 malocclusion were selected and stepwise multiple regression analysis was employed. Following conclusions were obtained by analysing the changes of soft tissue and hard tissue before and after treatment. 1. Hard tissue measurements that showed significant changes before and after treatment were horizontal and angular changes of maxillary incisor, horizontal,vertical and angular changes of mandibular incisor, overjet, overbite, interincisal angle, mandibular repositioning, A,B, skeletal convexity and soft tissue measurements that showed significant changes were horizontal, thickness and angular changes of upper lip, horizontal and angular changes of lower lip, interlabial angle, nasolabial angle labiomental angle, Sri, Ss, Si and soft tissue convexity(P<0.05). 2. All Soft tissue measurements changed significantly before and after treatment had between one and four hard tissue independent variables at statistically significant level, indicating that all soft tissue changes were direct relationship with hard tissue changes 3. Ova jet, horizontal change of maxillary incisor, horizontal change of maxillary root apex and horizontal change of pogonion entered into prediction equations most frequentely indicating that they were more significant variables in prediction of vertical and horizontal changes in the soft tissue with treatment, but vertical changes of mandibular incisor not entered any prediction equations, indicating that it was not considered a good predictor for soft tissue changes with maxillary incisor retraction. 4. Horizontal and vertical changes in subnasale were found to have most independent variables, significant at the 0.05 level in prediction-equations(${\Delta}$Sn(H):Ur, Is(H), Pg(H), UIA,${\Delta}$Sn(V): Is(H), Pg(H), overjet, A), indicating that subnasale changes are influenced by complex hard tissue interaction. 5. Multiple correlation coefficient($R^2$) of the soft tissue prediction equations ranges from 0.2-0.6.

  • PDF

Influence of Preferred Chewing Habit on Electromyographic Activity of Masticatory Muscles and Bite Force (편측저작이 저작근의 근활성도와 교합력에 미치는 영향)

  • Yang, Ho-Yeon;Shin, Jun-Han;Choi, Jong-Hoon;Ahn, Hyoung-Joon
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.1
    • /
    • pp.45-55
    • /
    • 2005
  • As people prefer to use right or left hand, some have preferred chewing side while others do not. Totally, 82 volunteers composed of students and staffs from Dental Hospital College of Dentistry Yonsei University participated in this study for the investigation of influence of preferred chewing habit, that has lasted for more than a year, on electromyographic(EMG) activity of masticatory muscles and bite force. Among the 82 volunteers, 46 had preferred chewing habit while the other 36 did not. Prior to the investigation, those with factors that could affect the study, such as, general disease, irregular dentition and malocclusion, were screened and excluded by questionnaire and clinical examination. The results were as follows: 1. There was no significant difference in EMG activities between chewing side and non-chewing side of preferred chewing subjects at rest as well as maximal voluntary contraction(MCV)(p>0.05). 2. Asymmetrical coefficient of temporal and masseter muscle EMG activities between preferred chewing subjects and non-preferred chewing subjects at rest was not significantly different(p>0.05). 3. Asymmetrical coefficient of masseter EMG activity was significantly higher(p<0.05) than that of non-preferred chewing subjects at MCV, whereas that of anterior temporal muscle showed no difference(p<0.05). 4. In preferred chewing subjects, there was no significant difference in average bite force and occlusal contact area between chewing side and non-chewing side(p>0.05). 5. There was no significant difference in Asymmetrical coefficients of average bite force and occlusal contact area between preferred chewing subjects and non-preferred chewing subjects (p>0.05). Consequently, preferred chewing habit can be considered as physiological asymmetry with normal function rather than to have influence on EMG muscle activity of masticatory muscles, average bite force and occlusal contact area. Objective standardization to differentiate preferred chewing subjects and non-preferred chewing subjects should be established in the further study.

Clinical Assessment and Cephalometric Characteristics in Patients with Condylar Resorption (하악과두흡수 환자의 임상적 평가 및 악안면 골격형태에 대한 연구)

  • Koo, Seon-Ju;Kim, Kyun-Yo;Hur, Yun-Kyung;Chae, Jong-Moon;Choi, Jae-Kap
    • Journal of Oral Medicine and Pain
    • /
    • v.34 no.1
    • /
    • pp.91-102
    • /
    • 2009
  • Condylar resorption, or condylysis can be defined as progressive alteration of condylar shape and decrease in mass. Condylar resorption is a poorly understood progressive disease that affects the TMJ and that can result in malocclusion, facial disfigurement, TMJ dysfunction, and pain. The aim of this study was to investigate clinical assessment and cephalometric characteristics in 224 patients with condylar resorption, who visited in the Department of Oral Medicine Kyungpook National University Hospital at 2006, by use of panorama, transcranial view and lateral cephalometric radiograph. The results were as follows; 1. Clinical assessment 1) Total number of patients who visited with chief complaints of TMD were 2419 and 224 (9.3%) among them revealed the condylar resorption, Among patients group with condylar resorption, female was 183 and male was 41, females were predominant. 2) Patient's age ranged from 12 to 70 and mean age was 30.6 years old with a strong predominance for 10s and 20s. Distribution of a showed as follows; 10s was 26.3%, 20s was 34,8%, 30s was 13.8%, 40s was 11.2%, 50s was 7.1%, 60s was 6.3% and 70s was 0.4%. 3) Most of the patients had parafunctional habit. 4) The case of showing the pain in condylar resorption was 145, the case of not showing the pain was 79. 5) Treatment duration of the patients was relatively short. 2. Cephalometric Characteristics 1) ANB which means the retruding of the mandible increased significantly than normal group. The ANB of female was lager than male group as the means of ANB were 5.05 in female and 3.57 in male, 2) SN-GoMe and FMA increased in resorption patients, but FH-PP did not show any significant difference. The FMA of female was lager than male group as the means were 31.69 in female and 30.44 in male. 3) Total posterior facial height was significantly smaller and total anterior facial height showed no significant increase as compared with those of the normal group. Condylar resorption was predominant in young female which was caused by more vertical facial pattern in female than male and increase of parafunctional habit in young age. It was thought that the patients who have a risk factor increasing the compressive stress at condyle caused by obliquely inclined masseter and medial pterygoid show high prevalence of condylar resorption.

EVALUATION OF CONDYLAR POSITION USING COMPUTED TOMOGRAPH FOLLOWING BILATERAL SAGITTAL SPLIT RAMUS OSTEOTOMY (전산화단층촬영법을 이용한 하악 전돌증 환자의 하악지 시상 골절단술후 하악과두 위치변화 분석)

  • Chol, Kang-Young;Lee, Sang-Han
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.18 no.4
    • /
    • pp.570-593
    • /
    • 1996
  • This study was intended to perform the influence of condyle positional change after surgical correction of skeletal Class III malocclusion after BSSRO in 20 patients(males 9, females 11) using computed tomogram that were taken in centric occlusion before, immediate, and long term after surgery and lateral cephalogram that were taken in centric occlusion before, 7 days within the period intermaxillary fixation, 24hour after removing intermaxillary fixation and long term after surgery. 1. Mean intercondylar distance was $84.45{\pm}4.01mm$ and horizontal long axis of condylar angle was $11.89{\pm}5.19^{\circ}$on right, $11.65{\pm}2.09^{\circ}$on left side and condylar lateral poles were located about 12mm and medial poles about 7mm from reference line(AA') on the axial tomograph. Mean intercondylar distance was $84.43{\pm}3.96mm$ and vertical axis angle of condylar angle was $78.72{\pm}3.43^{\circ}$on right, $78.09{\pm}6.12^{\circ}$on left. 2. No statistical significance was found on the condylar change(T2C-T1C) but it had definitive increasing tendency. There was significant decreasing of the distance between both condylar pole and the AA'(p<0.05) during the long term(TLC-T2C). 3. On the lateral cephalogram, no statistical significance was found between immediate after surgery and 24 hours after the removing of intermaxillary fixation but only the lower incisor tip moved forward about 0.33mm(p<0.05). Considering individual relapse rate, mean relapse rate was 1.2% on L1, 5.0% on B, 2.0% on Pog, 9.1% on Gn, 10.3% on Me(p<0.05). 4. There was statistical significance on the influence of the mandibular set-back to the total mandibular relapse(p<0.05). 5. There was no statistical significance on the influence of the mandibular set-back(T2-T1) to the condylar change(T2C-T1C), the condylar change(T2C-T1C, TLC-T2C) to the mandibular total relapse, the pre-operative condylar position to the condylar change(T2C-T1C, TLC-T2C), the pre-operative mandibular posture to the condylar change(T2C-T1C, TLC-T2C)(p>0.05). 6. The result of multiple regression analysis on the influence of the pre-operative condylar position to the total mandibular relapse revealed that the more increasing of intercondylar distance and condylar vertical axis angle and decreasing of condyalr head long axis angle, the more increasing of mandibular horizontal relapse(L1,B,Pog,Gn,Me) on the right side condyle. The same result was founded in the case of horizontal relapse(L1,Me) on the left side condyle.(p<0.05). 7. The result of multiple regression analysis on the influence of the pre-operative condylar position to the pre-operative mandibular posture revealed that the more increasing of intercondylar distance and condylar vertical axis angle and decreasing of condylar head long axis angle, the more increasing of mandibular vertical length on the right side condyle. and increasing of vertical lengh & prognathism on the left side condyle(p<0.05). 8. The result of simple regression analysis on the influence of the pre-operative mandibular posture to the mandibular total relapse revealed that the more increasing of prognathism, the more increasing of mandibular total relapse in B and the more increasing of over-jet the more increasing of mandibular total relapse(p<0.05). Consequently, surgical mandibular repositioning was not significantly influenced to the change of condylar position with condylar reposition method.

  • PDF