• Title/Summary/Keyword: malicious nodes

Search Result 143, Processing Time 0.022 seconds

DTCF: A Distributed Trust Computing Framework for Vehicular Ad hoc Networks

  • Gazdar, Tahani;Belghith, Abdelfettah;AlMogren, Ahmad S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1533-1556
    • /
    • 2017
  • The concept of trust in vehicular ad hoc networks (VANETs) is usually utilized to assess the trustworthiness of the received data as well as that of the sending entities. The quality of safety applications in VANETs largely depends on the trustworthiness of exchanged data. In this paper, we propose a self-organized distributed trust computing framework (DTCF) for VANETs to compute the trustworthiness of each vehicle, in order to filter out malicious nodes and recognize fully trusted nodes. The proposed framework is solely based on the investigation of the direct experience among vehicles without using any recommendation system. A tier-based dissemination technique for data messages is used to filter out non authentic messages and corresponding events before even going farther away from the source of the event. Extensive simulations are conducted using Omnet++/Sumo in order to investigate the efficiency of our framework and the consistency of the computed trust metrics in both urban and highway environments. Despite the high dynamics in such networks, our proposed DTCF is capable of detecting more than 85% of fully trusted vehicles, and filtering out virtually all malicious entities. The resulting average delay to detect malicious vehicles and fraudulent data is showed to be less than 1 second, and the computed trust metrics are shown to be highly consistent throughout the network.

A Symmetric Lookup-based Secure P2P Routing Algorithm

  • Luo, Bingqing;Jin, Yiai;Luo, Shengmei;Sun, Zhixin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2203-2217
    • /
    • 2016
  • To prevent structured peer to peer (P2P) overlay networksfrom being attacked by malicious nodes, a symmetric lookup-based routing algorithm referred to as Symmetric-Chord is proposed in this paper. The proposed algorithm determines the precision of routing lookup by constructing multiple paths to the destination. The selective routing algorithm is used to acquire information on the neighbors of the root. Authenticity of the root is validated via consistency shown between the information ascertained from the neighbors and information from the yet-to-be-verified root, resulting in greater efficiency of resource lookup. Simulation results demonstrate that Symmetric-Chordhas the capability of detecting malicious nodes both accurately and efficiently, so as to identify which root holds the correct key, and provides an effective approach to the routing security for the P2P overlay network.

A Secure Routing Protocol in MANET based on Malicious behavior Pattern of Node and Trust Level (노드의 악의적 행위패턴 및 신뢰수준 기반의 MANET Secure 라무팅 방안)

  • Park, Seong-Seung;Park, Gun-Woo;Ryu, Keun-Ho;Lee, Sang-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.5
    • /
    • pp.103-117
    • /
    • 2009
  • In MANET(Mobile Ad-Hoc Network), providing security to routing has been a significant issue recently. Existing studies, however, focused on either of secure routing or packet itself where malicious operations occur. In this paper, we propose SRPPnT(A Secure Routing Protocol in MANET based on Malicious Pattern of Node and Trust Level) that consider both malicious behavior on packet and secure routing. SRPPnT is identify the node where malicious activities occur for a specific time to compose trust levels for each node, and then to set up a routing path according to the trust level obtained. Therefore, SRPPnT is able to make efficient countermeasures against malicious operations. SRPPnT is based on AODV(Ad-Hoc On-Demand Distance Vector Routing). The proposed SRPPnT, from results of the NS-2 network simulation. shows a more prompt and accurate finding of malicious nodes than previous protocols did, under the condition of decreased load of networks and route more securely.

A Distributed Trust Model Based on Reputation Management of Peers for P2P VoD Services

  • Huang, Guimin;Hu, Min;Zhou, Ya;Liu, Pingshan;Zhang, Yanchun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2285-2301
    • /
    • 2012
  • Peer-to-Peer (P2P) networks are becoming more and more popular in video content delivery services, such as Video on Demand (VoD). Scalability feature of P2P allows a higher number of simultaneous users at a given server load and bandwidth to use stream service. However, the quality of service (QoS) in these networks is difficult to be guaranteed because of the free-riding problem that nodes download the recourses while never uploading recourses, which degrades the performance of P2P VoD networks. In this paper, a distributed trust model is designed to reduce node's free-riding phenomenon in P2P VoD networks. In this model, the P2P network is abstracted to be a super node hierarchical structure to monitor the reputation of nodes. In order to calculate the reputation of nodes, the Hidden Markov Model (HMM) is introduced in this paper. Besides, a distinction algorithm is proposed to distinguish the free-riders and malicious nodes. The free-riders are the nodes which have a low frequency to free-ride. And the malicious nodes have a high frequency to free-ride. The distinction algorithm takes different measures to response to the request of these two kinds of free-riders. The simulation results demonstrate that this proposed trust model can improve QoS effectively in P2P VoD networks.

A Secure Intrusion Detection System for Mobile Ad Hoc Network (모바일 Ad Hoc 네트워크를 위한 안전한 침입 탐지 시스템)

  • Shrestha, Rakesh;Lee, Sang-Duk;Choi, Dong-You;Han, Seung-Jo;Lee, Seong-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.1
    • /
    • pp.87-94
    • /
    • 2009
  • The intrusion detection system is one of the active fields of research in wireless networks. Intrusion detection in wireless mobile Ad hoc network is challenging because the network topologies are dynamic, lack centralization and are vulnerable to attacks. Detection of malicious nodes in an open ad-hoc network in which participating nodes do not have previous security association has to face number of challenges which is described in this paper. This paper is about determining the malicious nodes under critical conditions in the mobile ad-hoc network and deals with security and vulnerabilities issues which results in the better performance and detection of the intrusion.

A Novel Trust Establishment Method for Wireless Sensor Networks

  • Ishmanov, Farruh;Kim, Sung Won
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1529-1547
    • /
    • 2015
  • Establishment of trust is important in wireless sensor networks for security enhancement and successful collaboration. Basically, a node establishes trust with other nodes by estimating a trust value based on monitored behavior of the other nodes. Since a malicious/misbehaving node might launch different attack strategies and might demonstrate random misbehavior, a trust estimation method should be robust against such attacks and misbehavior. Otherwise, the operation of trust establishment will be meaningless, and performance of an application that runs on top of trust establishment will degrade. In this paper, we propose a robust and novel trust estimation method. Unlike traditional trust estimation methods, we consider not only the weight of misbehavior but also the frequency of misbehavior. The frequency-of-misbehavior component explicitly demonstrates how frequently a node misbehaves during a certain observed time period, and it tracks the behavior of nodes more efficiently, which is a main factor in deriving an accurate trust value. In addition, the weight of misbehavior is comprehensively measured to mitigate the effect of an on-off attack. Frequency and weight of misbehavior are comprehensively combined to obtain the trust value. Evaluation results show that the proposed method outperforms other trust estimation methods under different attacks and types of misbehavior.

An Anomaly Detection Method for the Security of VANETs (VANETs의 보안을 위한 비정상 행위 탐지 방법)

  • Oh, Sun-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.77-83
    • /
    • 2010
  • Vehicular Ad Hoc Networks are self-organizing Peer-to-Peer networks that typically have highly mobile vehicle nodes, moving at high speeds, very short-lasting and unstable communication links. VANETs are formed without fixed infrastructure, central administration, and dedicated routing equipment, and network nodes are mobile, joining and leaving the network over time. So, VANET-security is very vulnerable for the intrusion of malicious and misbehaving nodes in the network, since VANETs are mostly open networks, allowing everyone connect, without centralized control. In this paper, we propose a rough set based anomaly detection method that efficiently identify malicious behavior of vehicle node activities in these VANETs, and the performance of a proposed scheme is evaluated by a simulation in terms of anomaly detection rate and false alarm rate for the threshold ${\epsilon}$.

User verification system for improving blockchain node reliability (블록체인 노드 신뢰성 향상을 위한 사용자 검증 시스템)

  • An, Kyuhwang;Seo, Hwajeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.9
    • /
    • pp.1264-1270
    • /
    • 2018
  • Blockchain is a technology that directly connects each node to P2P method, except for the central server. A public blockchain is one of the blockchain types, anyone can participate without any restriction. If some node find nonce, which node can broadcasted data to all nodes. At this time, if a node that finds a nonce hides malicious code in the block, all nodes participating in the chain may be infected with malicious code due to the characteristics of the decentralization system of the blockchain. In this paper, to solve the problem that hackers can participate as an any node, we propose that a user with malicious intent can not participate as a node through a firewall with AI technology. This will improve the reliability of the propagated data over existing data.

An Efficient Secure Routing Protocol Based on Token Escrow Tree for Wireless Ad Hoc Networks (무선 애드 혹 네트워크에서 보안성을 고려한 Token Escrow 트리 기반의 효율적인 라우팅 프로토콜)

  • Lee, Jae Sik;Kim, Sung Chun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.4
    • /
    • pp.155-162
    • /
    • 2013
  • Routing protocol in ad hoc mobile networking has been an active research area in recent years. However, the environments of ad hoc network tend to have vulnerable points from attacks, because ad hoc mobile network is a kind of wireless network without centralized authentication or fixed network infrastructure such as base stations. Also, existing routing protocols that are effective in a wired network become inapplicable in ad hoc mobile networks. To address these issues, several secure routing protocols have been proposed: SAODV and SRPTES. Even though our protocols are intensified security of networks than existing protocols, they can not deal fluidly with frequent changing of wireless environment. Moreover, demerits in energy efficiency are detected because they concentrated only safety routing. In this paper, we propose an energy efficient secure routing protocol for various ad hoc mobile environment. First of all, we provide that the nodes distribute security information to reliable nodes for secure routing. The nodes constitute tree-structured with around nodes for token escrow, this action will protect invasion of malicious node through hiding security information. Next, we propose multi-path routing based security level for protection from dropping attack of malicious node, then networks will prevent data from unexpected packet loss. As a result, this algorithm enhances packet delivery ratio in network environment which has some malicious nodes, and a life time of entire network is extended through consuming energy evenly.

Energy Efficiency Enhancement of TICK -based Fuzzy Logic for Selecting Forwarding Nodes in WSNs

  • Ashraf, Muhammad;Cho, Tae Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4271-4294
    • /
    • 2018
  • Communication cost is the most important factor in Wireless Sensor Networks (WSNs), as exchanging control keying messages consumes a large amount of energy from the constituent sensor nodes. Time-based Dynamic Keying and En-Route Filtering (TICK) can reduce the communication costs by utilizing local time values of the en-route nodes to generate one-time dynamic keys that are used to encrypt reports in a manner that further avoids the regular keying or re-keying of messages. Although TICK is more energy efficient, it employs no re-encryption operation strategy that cannot determine whether a healthy report might be considered as malicious if the clock drift between the source node and the forwarding node is too large. Secure SOurce-BAsed Loose Synchronization (SOBAS) employs a selective encryption en-route in which fixed nodes are selected to re-encrypt the data. Therefore, the selection of encryption nodes is non-adaptive, and the dynamic network conditions (i.e., The residual energy of en-route nodes, hop count, and false positive rate) are also not focused in SOBAS. We propose an energy efficient selection of re-encryption nodes based on fuzzy logic. Simulation results indicate that the proposed method achieves better energy conservation at the en-route nodes along the path when compared to TICK and SOBAS.