• 제목/요약/키워드: maintenance optimization

검색결과 360건 처리시간 0.029초

해상구조물의 방식설계 최적화를 위한 설계요건 분석 및 시간의존적 방식성능 해석 (Design Requirements Review and Time-dependant CP Performance Analysis for Corrosion Protection Design Optimization of Offshore Structure)

  • 박재철;최유열;편강일;천강우;장화섭;노길태
    • 한국표면공학회지
    • /
    • 제49권5호
    • /
    • pp.408-415
    • /
    • 2016
  • The offshore structures exposed to harsh corrosive such as the marine environment is essential for the quality management technique throughout the life cycle of initial design, construction and operation. Also, it should satisfy the design life and ensure the safety of the substructure with optimization of design process. This study focused on optimization of design condition for corrosion protection of wind turbine structure and computational analyzing was performed to evaluate the performance of corrosion protection with utilizing practical experimental data. We expect this analytical study contribute to improve the corrosion maintenance stability and economical efficiency of designing wind turbine structures. As a result, the design of cathodic protection system using sacrificial anodes required accurate identification of current density in order to meet the long term design life, which can be seen that a change of structure surface's coating breakdown factor is one of the key influencing factors.

CSS 가독성 향상을 위한 최적화기법 (An Optimization Technique to Improve Readability of CSS)

  • 정우성;이은주
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권7호
    • /
    • pp.99-108
    • /
    • 2010
  • 웹 어플리케이션의 원활한 유지보수를 위하여 소스 페이지의 가독성 향상은 필수적이다. CSS는 웹 페이지의 구성 요소 중에서 순수한 표현계층이지만 인라인 형태로 삽입되는 경우가 많고, 웹 개발도구에 의해 자동생성되기도 하는데, 이들은 전체 코드의 가독성과 UI 계층의 재사용성이 떨어지게 된다. 기존의 CSS 최적화 연구는 주로 사이즈 압축을 다루고 있어 재사용성이나 가독성에 초점을 맞추고 있지 않다. 본 논문에서는 CSS 가독성 및 재사용성 향상을 위하여 CSS 코드를 구조화하고, 가독성 향상을 위한 기준을 정의하였다. 이들을 기반으로 최종적으로 CSS 코드의 가독성을 높이는 알고리즘을 제안하고, 예제 및 실험을 통하여 본 접근법의 유용성을 보인다.

Optimization of Space Debris Collision Avoidance Maneuver for Formation Flying Satellites

  • Seong, Jae-Dong;Kim, Hae-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • 제30권4호
    • /
    • pp.291-298
    • /
    • 2013
  • The concept of the satellite formation flight is area where it is actively study with expandability and safety compare to existing satellite. For execution of duty with more safety issue, it needs to consider hot topic of space debris for operation of formation flight. In this paper, it suggests heuristic algorithm to have avoidance maneuver for space debris towards operating flight formation. Indeed it covers, using common software, operating simulation to nearest space environment and not only to have goal of avoidance but also minimizing the usage of fuel and finding optimization for maximizing cycle of formation flight. For improvement on convergence speed of existing heuristic algorithm, it substitute to hybrid heuristic algorithm, PSOGSA, and the result of simulation, it represents the satisfaction of minimum range for successful avoidance maneuver and compare to not using avoidance maneuver, it keeps more than three times of formation maintenance performance. From these, it is meaningful results of showing several success goals like simple avoidance collision and fuel usage and decreasing number of times of maintaining formation maneuver.

A novel approach for optimal DG allocation in distribution network for minimizing voltage sag

  • Hashemian, Pejman;Nematollahi, Amin Foroughi;Vahidi, Behrooz
    • Advances in Energy Research
    • /
    • 제6권1호
    • /
    • pp.55-73
    • /
    • 2019
  • The cost incurred by voltage sag effect in power networks has always been of important concern for discussions. Due to the environmental constraints, fossil fuel shortage crisis and low efficiency of conventional power plants, decentralized generation and renewable based DG have become trends in recent decades; because DGs can reduce the voltage sag effect in distribution networks noticeably; therefore, optimum allocation of DGs in order to maximize their effectiveness is highly important in order to maximize their effectiveness. In this paper, a new method is proposed for calculating the cost incurred by voltage sag effect in power networks. Thus, a new objective function is provided that comprehends technical standards as minimization of the cost incurred by voltage sag effect, active power losses and economic criterion as the installation and maintenance costs of DGs. Considering operational constraints of the system, the optimum allocation of DGs is a constrained optimization problem in which Lightning Attachment procedure optimization (LAPO) is used to resolve it and is the optimum number, size and location of DGs are determined in IEEE 33 bus test system and IEEE 34 bus test system. The results show that optimum allocation of DGs not only reduces the cost incurred by voltage sag effect, but also improves the other characteristics of the system.

OAPR-HOML'1: Optimal automated program repair approach based on hybrid improved grasshopper optimization and opposition learning based artificial neural network

  • MAMATHA, T.;RAMA SUBBA REDDY, B.;BINDU, C SHOBA
    • International Journal of Computer Science & Network Security
    • /
    • 제22권4호
    • /
    • pp.261-273
    • /
    • 2022
  • Over the last decade, the scientific community has been actively developing technologies for automated software bug fixes called Automated Program Repair (APR). Several APR techniques have recently been proposed to effectively address multiple classroom programming errors. However, little attention has been paid to the advances in effective APR techniques for software bugs that are widely occurring during the software life cycle maintenance phase. To further enhance the concept of software testing and debugging, we recommend an optimized automated software repair approach based on hybrid technology (OAPR-HOML'1). The first contribution of the proposed OAPR-HOML'1 technique is to introduce an improved grasshopper optimization (IGO) algorithm for fault location identification in the given test projects. Then, we illustrate an opposition learning based artificial neural network (OL-ANN) technique to select AST node-level transformation schemas to create the sketches which provide automated program repair for those faulty projects. Finally, the OAPR-HOML'1 is evaluated using Defects4J benchmark and the performance is compared with the modern technologies number of bugs fixed, accuracy, precession, recall and F-measure.

A MULTI-OBJECTIVE OPTIMIZATION FOR CAPITAL STRUCTURE IN PRIVATELY-FINANCED INFRASTRUCTURE PROJECTS

  • S.M. Yun;S.H. Han;H. Kim
    • 국제학술발표논문집
    • /
    • The 2th International Conference on Construction Engineering and Project Management
    • /
    • pp.509-519
    • /
    • 2007
  • Private financing is playing an increasing role in public infrastructure construction projects worldwide. However, private investors/operators are exposed to the financial risk of low profitability due to the inaccurate estimation of facility demand, operation income, maintenance costs, etc. From the operator's perspective, a sound and thorough financial feasibility study is required to establish the appropriate capital structure of a project. Operators tend to reduce the equity amount to minimize the level of risk exposure, while creditors persist to raise it, in an attempt to secure a sufficient level of financial involvement from the operators. Therefore, it is important for creditors and operators to reach an agreement for a balanced capital structure that synthetically considers both profitability and repayment capacity. This paper presents an optimal capital structure model for successful private infrastructure investment. This model finds the optimized point where the profitability is balanced with the repayment capacity, with the use of the concept of utility function and multi-objective GA (Generic Algorithm)-based optimization. A case study is presented to show the validity of the model and its verification. The research conclusions provide a proper capital structure for privately-financed infrastructure projects through a proposed multi-objective model.

  • PDF

A Metaheuristic Approach Towards Enhancement of Network Lifetime in Wireless Sensor Networks

  • J. Samuel Manoharan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권4호
    • /
    • pp.1276-1295
    • /
    • 2023
  • Sensor networks are now an essential aspect of wireless communication, especially with the introduction of new gadgets and protocols. Their ability to be deployed anywhere, especially where human presence is undesirable, makes them perfect choices for remote observation and control. Despite their vast range of applications from home to hostile territory monitoring, limited battery power remains a limiting factor in their efficacy. To analyze and transmit data, it requires intelligent use of available battery power. Several studies have established effective routing algorithms based on clustering. However, choosing optimal cluster heads and similarity measures for clustering significantly increases computing time and cost. This work proposes and implements a simple two-phase technique of route creation and maintenance to ensure route reliability by employing nature-inspired ant colony optimization followed by the fuzzy decision engine (FDE). Benchmark methods such as PSO, ACO and GWO are compared with the proposed HRCM's performance. The objective has been focused towards establishing the superiority of proposed work amongst existing optimization methods in a standalone configuration. An average of 15% improvement in energy consumption followed by 12% improvement in latency reduction is observed in proposed hybrid model over standalone optimization methods.

주기적인 유지보수 계획에 따른 중고제품에 대한 최적 향상수준 (Optimization of Improvement Level for Second-Hand Product with Periodic Maintenance Schedule)

  • 김대경;김진우;박동호
    • 응용통계연구
    • /
    • 제26권1호
    • /
    • pp.151-162
    • /
    • 2013
  • 중고제품 특히 고가인 중고품에 대한 점증하는 수요로 인하여 그러한 제품에 대한 보증과 보전정책이 최근 제품의 신뢰성을 향상시키기 위해 연구되고 있다. 이 논문에서는 사용한 년 수 x에서 고객에 의해서 구입된 중고제품에 대한 주기적인 유지보수모형을 연구하였다. 구입할 때 판매자는 제품의 고장율을 줄이기 위해서 그리고 각각의 유지보수가 수행되고 난 이후에 신뢰성을 향상시키기 위해서 정해진 보증기간을 제공한다. 만일 연속적인 유지보수 사이에서 고장이 일어난다면 단지 최소수리가 행해진다. 보증정책에 대해서 보증기간동안에 주기적인 유지보수 점검과 더불어 각 고장에 관해서는 무상 비재생수리를 한다. 따라서 이러한 보증정책 하에서 보증기간에 일어난 모든 유지보수와 수리비용은 판매자에게 부과된다. 제안된 주기적인 유비보수 계획에 대해서 보증기간 동안에 판매자에게 부과된 기대 총비용을 계산하기 위한 모형과 판매자의 측면에서 총기대보증비용을 최소화하기 위한 각 유지보수에서 고장율의 최적향상수준을 유도한다. 또한 제안된 방법들에 근거해서 최적향상수준에 대한 수치적인 결과를 제시한다.

The Development of the Real Time Optimal Byproduct Gas Supply System

  • Kim, Jeonghwan;Yi, Heui-Sok;Chonghum Han
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.69.6-69
    • /
    • 2002
  • The optimal byproduct gas supply system was developed for the optimal management of the byproduct gases in the iron and steel making process based on EXCEL environment. It supplies optimal byproduct gas distribution result as well as analysis including expected electricity generation, holder level change, amount of oil consumption, energy distribution to each boiler, and efficiency of energy resource. To reflect the changing environment of the plant such as maintenance, the system was developed to easily change the optimization model for changing configuration of the system. To verify the performance of the system , case studies for various situation was performed with the developed system, a...

  • PDF

하이브리드 PSO 알고리즘을 이용한 발전기 보수 계획 (Generating Unit Maintenance Scheduling Considering Regional Reserves using Hybrid PSO Algorithm)

  • 박영수;김진호;박준호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.800-801
    • /
    • 2007
  • 본 연구는 지역별 전력수급을 고려한 발전기 보수 계획 수립에 관한 Hybrid Particle Swarm Optimization알고리즘(HPSO) 접근법을 제시하였다. 전체 계통의 예비력 확보에 초점이 맞춰진 기존의 연구에 지역별 예비력을 고려한 제약조건을 추가하였다. 본 연구의 목적함수로는 결정적 신뢰도 지수인 공급 예비율 분산값의 최소화(공급예비율 평활화)를 사용하였으며, IEEE RTS(1996) 계통에서의 사례연구를 수행하여 기존의 PSO알고리즘의 경우와의 비교분석을 통해 제안된 방법의 우수성을 보였다.

  • PDF