• Title/Summary/Keyword: maintenance monitoring sensor

Search Result 247, Processing Time 0.025 seconds

Velocity-based decision of water quality measurement locations for the identification of water quality problems in water supply systems (상수도시스템 수질사고 인지를 위한 유속기반 수질계측기 위치 결정)

  • Hong, Sungjin;Lee, Chanwook;Park, Jiseung;Yoo, Do Guen
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.11
    • /
    • pp.1015-1024
    • /
    • 2020
  • Recently, water pollution accidents have continued to occur in pipelines such as red water Incheon and Seoul. In order to recognize this water quality problem, it is necessary to install a water quality sensor in an appropriate location and measure it in advance to detect or block the water supply to the water faucet of the shelter. However, there are limitations, such as maintenance costs, to installing multiple water meters in all pipelines. Therefore, this study proposed a methodology for determining and prioritizing the installation location of flow-based water quality sensor for the recognition of water quality problems in pipelines. We applied the proposed procedure to the pipe break scenario. The results of the determination of the location of the water quality sensor were presented by applying it to the pipe network that actually operates the emergency pipe in Korea. The result of the decision showed that in the event of abnormal situation caused by the destruction of individual pipes, the flow rate of the pipes around the aqueduct and the tank may change rapidly, resulting in water quality accidents caused by turbidity. In the future, it is expected that the water quality monitoring point selection method, such as establishing an external pipe operation plan for pipe cleaning, will utilize the procedure for determining the location of the water quality sensor according to the velocity.

Estimation Method of Strain Distribution for Safety Monitoring of Multi-span Steel Beam Using FBG Sensor (FBG센서를 이용한 다경간 강재 보 구조물의 안전성 모니터링을 위한 변형률 분포 추정 기법)

  • Oh, Byung-Kwan;Lee, Ji-Hoon;Choi, Se-Woon;Park, Hyo-Seon;Kim, You-Sok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.138-149
    • /
    • 2014
  • This study proposes an estimation method of strain distribution for multi-span steel beam structure under unspecific loading conditions. The estimation method in this paper employs the curve fitting using the least square method from measured strain data, not analytical method. To verify the proposed estimation method, a static loading test for multi-span steel beam on which distributed and concentrated loads act was conducted. The strain data for verification was measured by FBG sensors that have multiplexing technology. The analysis of the accuracy of strain estimation for distributed and concentrated loads and the errors by considering the number of measured points used in the estimation were conducted. In the maximum strain points, the strains could be estimated with the errors of 5.89% (loading step 1) and 6.26% (loading step 2). In case of decreasing the number of sensors, it was also confirmed that the errors increased (0.26~0.37%). Through the curve fitting method, it is possible to estimate the strain distribution (maximum strains and their locations) of multi-span beam for unspecific loads and go over the limit of the analytical estimation method which is suitable for specific distributed loads.

Damage estimation for structural safety evaluation using dynamic displace measurement (구조안전도 평가를 위한 동적변위 기반 손상도 추정 기법 개발)

  • Shin, Yoon-Soo;Kim, Junhee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.87-94
    • /
    • 2019
  • Recently, the advance of accurate dynamic displacement measurement devices, such as GPS, computer vision, and optic laser sensor, has enhanced the structural monitoring technology. In this study, the dynamic displacement data was used to verify the applicability of the structural physical parameter estimation method through subspace system identification. The subspace system identification theory for estimating state-space model from measured data and physics-based interpretation for deriving the physical parameter of the estimated system are presented. Three-degree-freedom steel structures were fabricated for the experimental verification of the theory in this study. Laser displacement sensor and accelerometer were used to measure the displacement data of each floor and the acceleration data of the shaking table. Discrete state-space model generated from measured data was verified for precision. The discrete state-space model generated from the measured data extracted the floor stiffness of the building after accuracy verification. In addition, based on the story stiffness extracted from the state space model, five column stiffening and damage samples were set up to extract the change rate of story stiffness for each sample. As a result, in case of reinforcement and damage under the same condition, the stiffness change showed a high matching rate.

Comparative Analysis of Seismic Records Observed at Seismic Stations and Smartphone MEMS Sensors (지진관측소와 스마트폰 MEMS 센서 기록의 비교분석)

  • Jang, Dongil;Ahn, Jae-Kwang;Kwon, Youngwoo;Kwak, Dongyoup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.513-522
    • /
    • 2021
  • A smartphone (SMP) includes a MEMS sensor that can record 3-components motions and has a wireless network device to transmit data in live. These features and relatively low maintenance costs are the advantage of using SMPs as an auxiliary seismic observation network. Currently, 279 SMPs are monitoring seismic motions. In this study, we compare the SMP records with the seismic station (SS) records to validate SMP records. The data used for comparison are records for five earthquakes that occurred in 2019, which are 321 SS data recorded by the Korea Meteorological Administration and the Korea Institute of Geoscience and Mineral Resources and 145 recorded by SMPs. The analysis shows that the event-term corrected average residual of the SMP MEMS sensor records is 0.59 which indicating that the peak horizontal acceleration by SMP is 1.8 factor bigger than the peak ground acceleration by SS. In addition, the residuals tend to decrease as the installation floor of the smartphone MEMS sensor increases, which is the similar trend with response spectra from SS.

Development of a Slope Condition Analysis System using IoT Sensors and AI Camera (IoT 센서와 AI 카메라를 융합한 급경사지 상태 분석 시스템 개발)

  • Seungjoo Lee;Kiyen Jeong;Taehoon Lee;YoungSeok Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.43-52
    • /
    • 2024
  • Recent abnormal climate conditions have increased the risk of slope collapses, which frequently result in significant loss of life and property due to the absence of early prediction and warning dissemination. In this paper, we develop a slope condition analysis system using IoT sensors and AI-based camera to assess the condition of slopes. To develop the system, we conducted hardware and firmware design for measurement sensors considering the ground conditions of slopes, designed AI-based image analysis algorithms, and developed prediction and warning solutions and systems. We aimed to minimize errors in sensor data through the integration of IoT sensor data and AI camera image analysis, ultimately enhancing the reliability of the data. Additionally, we evaluated the accuracy (reliability) by applying it to actual slopes. As a result, sensor measurement errors were maintained within 0.1°, and the data transmission rate exceeded 95%. Moreover, the AI-based image analysis system demonstrated nighttime partial recognition rates of over 99%, indicating excellent performance even in low-light conditions. Through this research, it is anticipated that the analysis of slope conditions and smart maintenance management in various fields of Social Overhead Capital (SOC) facilities can be applied.

A Proposal of USN-based DER(Decentralized Energy Resources) Management System (USN 기반의 댁내 분산 전력 관리 시스템 제안)

  • Kim, Bo-Min;Kim, Jeong-Young;Bang, Hyun-Jin;Jang, Min-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.871-874
    • /
    • 2010
  • Needs for Smart Grid development are increasing all over the world as a solution to its problem according to depletion of energy resources, climatic and environmental rapidly change and growing demand for electrical power. Especially decentralized power is attracting world's attention. In this mood a new era for a unit scale of decentralized power environment is on its way in building. However there is a problem to have to be solved in the uniformity of power quality because the amount of power generated from renewable energy resources such as wind power and solar light is very sensitive to climate fluctuation. And thus this paper tries to suggest an energy management method on basis of real time monitoring for meteorological data. In the current situation of lacking in USN-based killer application in Smart Grid field, this paper proposes the USN-based DER management system which collects the meteorological data and control power system througout utilizing wireless sensor network technique this business. This communication technique is regarded to be efficient in aspects of installation cost and tits maintenance cost. The proposed EMS model embodies the method for predicting the power generation by monitoring and analyzing the climatic data and controling the efficient power distribution between the renewable energy and the existing power. The ultimate goal of this paper is to provide the technological basis for achieving zero-energy house.

  • PDF

Implementation of 3D Road Surface Monitoring System for Vehicle based on Line Laser (선레이저 기반 이동체용 3차원 노면 모니터링 시스템 구현)

  • Choi, Seungho;Kim, Seoyeon;Kim, Taesik;Min, Hong;Jung, Young-Hoon;Jung, Jinman
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.101-107
    • /
    • 2020
  • Road surface measurement is an essential process for quantifying the degree and displacement of roughness in road surface management. For safer road surface management and quick maintenance, it is important to accurately measure the road surface while mounted on a vehicle. In this paper, we propose a sophisticated road surface measurement system that can be measured on a moving vehicle. The proposed road surface measurement system supports more accurate measurement of the road surface by using a high-performance line laser sensor. It is also possible to measure the transverse and longitudinal profile by matching the position information acquired from the RTK, and the velocity adaptive update algorithm allows a manager to monitor in a real-time manner. In order to evaluate the proposed system, the Gocator laser sensor, MRP module, and NVIDIA Xavier processor were mounted on a test mobile and tested on the road surface. Our evaluation results demonstrate that our system measures accurate profile base on the MSE. Our proposed system can be used not only for evaluating the condition of roads but also for evaluating the impact of adjacent excavation.

Determination of Optimal Pressure Monitoring Locations for Water Distribution Systems using Entropy Theory (엔트로피 이론을 이용한 상수관망의 최적 압력 계측 위치 결정)

  • Chung, Gun-Hui;Chang, Dong-Eil;Yoo, Do-Guen;Jun, Hwan-Don;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.7
    • /
    • pp.537-546
    • /
    • 2009
  • Determination of optimal pressure monitoring location is essential to manage water distribution system efficiently and safely. In this study, entropy theory is applied to overcome defects of previous researches about determining the optimal sensor location. The previous studies required the calibration using historical data, therefore, it was difficult to apply the proposed method in the place where the enough data were not available. Also, most researches have focused on the locations to minimize cost and maximize accuracy of the model, which is not appropriate for the purpose of maintenance of the water distribution system. The proposed method in this study quantify the entropy which is defined as the amount of information calculated from the pressure change due to the variation of discharge. When abnormal condition is occurred in a node, the effect on the entire network is presented by the entropy, and the emitter is used to reproduce actual pressure change pattern in EPANET. The optimal location to install pressure sensors in water distribution system is the nodes having the maximum information from other nodes. The looped and branched networks are evaluated using the proposed model. As a result, entropy theory provides general guideline to select the locations to install pressure sensors and the results can be used to help decision makers.

A study on the monitoring of high-density fine particulate matters using W-station: Case of Jeju island (W-Station을 활용한 고밀도 초미세먼지 모니터링 연구: 제주도 사례)

  • Lee, Jong-Won;Park, Moon-Soo;Won, Wan-Sik;Son, Seok-Woo
    • Particle and aerosol research
    • /
    • v.16 no.2
    • /
    • pp.31-47
    • /
    • 2020
  • Although interest in air quality has increased due to the frequent occurrence of high-concentration fine particulate matter recently, the official fine particulate matter measuring network has failed to provide spatial detailed air quality information. This is because current measurement equipment has a high cost of installation and maintenance, which limits the composition of the measuring network at high resolution. To compensate for the limitations of the current official measuring network, this study constructed a spatial high density measuring network using the fine particulate matter simple measuring device developed by Observer, W-Station. W-Station installed 48 units on Jeju Island and measured PM2.5 for six months. The data collected in W-Station were corrected by applying the first regression equation for each section, and these measurements were compared and analyzed based on the official measurements installed in Jeju Island. As a result, the time series of PM2.5 concentrations measured in W-Station showed concentration characteristics similar to those of the environmental pollution measuring network. In particular, the results of comparing the measurements of W-Station within a 2 km radius of the reference station and the reference station showed that the coefficient of determination (R2) was 0.79, 0.81, 0.67, respectively. In addition, for W-Station within a 1 km radius, the coefficient of determination was 0.85, 0.82, 0.68, respectively, showing slightly higher correlation. In addition, the local concentration deviation of some regions could be confirmed through 48 high density measuring networks. These results show that if a network of measurements is constructed with adequate spatial distribution using a number of simple meters with a certain degree of proven performance, the measurements are effective in monitoring local air quality and can be fully utilized to supplement or replace formal measurements.

Localized reliability analysis on a large-span rigid frame bridge based on monitored strains from the long-term SHM system

  • Liu, Zejia;Li, Yinghua;Tang, Liqun;Liu, Yiping;Jiang, Zhenyu;Fang, Daining
    • Smart Structures and Systems
    • /
    • v.14 no.2
    • /
    • pp.209-224
    • /
    • 2014
  • With more and more built long-term structural health monitoring (SHM) systems, it has been considered to apply monitored data to learn the reliability of bridges. In this paper, based on a long-term SHM system, especially in which the sensors were embedded from the beginning of the construction of the bridge, a method to calculate the localized reliability around an embedded sensor is recommended and implemented. In the reliability analysis, the probability distribution of loading can be the statistics of stress transferred from the monitored strain which covered the effects of both the live and dead loads directly, and it means that the mean value and deviation of loads are fully derived from the monitored data. The probability distribution of resistance may be the statistics of strength of the material of the bridge accordingly. With five years' monitored strains, the localized reliabilities around the monitoring sensors of a bridge were computed by the method. Further, the monitored stresses are classified into two time segments in one year period to count the loading probability distribution according to the local climate conditions, which helps us to learn the reliability in different time segments and their evolvement trends. The results show that reliabilities and their evolvement trends in different parts of the bridge are different though they are all reliable yet. The method recommended in this paper is feasible to learn the localized reliabilities revealed from monitored data of a long-term SHM system of bridges, which would help bridge engineers and managers to decide a bridge inspection or maintenance strategy.