• Title/Summary/Keyword: main span of bridge

Search Result 219, Processing Time 0.027 seconds

Research and practice of health monitoring for long-span bridges in the mainland of China

  • Li, Hui;Ou, Jinping;Zhang, Xigang;Pei, Minshan;Li, Na
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.555-576
    • /
    • 2015
  • The large number of long-span bridges constructed in China motivates the applications of structural health monitoring (SHM) technology. Many bridges have been equipped with sophisticated SHM systems in the mainland of China and in Hong Kong of China. Recently, SHM technology has been extended to field test systems. In this view, SHM can serve as a tool to develop the methods of life-cycle performance design, evaluation, maintenance and management of bridges; to develop new structural analysis methods through validation and feedback from SHM results; and to understand the behavior of bridges under natural and man-made disasters, rapidly assess the damage and loss of structures over large regions after disasters, e.g., earthquake, typhoon, flood, etc. It is hoped that combining analytical methods, numerical simulation, small-scale tests and accelerated durability tests with SHM could become the main engine driving the development of bridge engineering. This paper demonstrates the above viewpoint.

A Study on the Longitudinal Behavior of 2-Span Continuous Railway Bridge (2경간 연속 철도교의 종방향 거동에 관한 연구)

  • Im, Jung-Soon;Jo, Jae-Byung;Bahng, Yun-Suk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.1 s.1
    • /
    • pp.81-90
    • /
    • 2001
  • This paper presents the results of the parametric study on the longitudinal behavior of 2-span continuous railway bridge. To perform the main objective of this paper, the effects of pier shaft stiffness, pier height, the size of pier foundation, and the bearing stiffness on the longitudinal behavior of the bridges are studied. Within the limits of this study, the research result has revealed that the variation of the fixed pier is more effective than that of the moved pier. In addition, the control of the hearing stiffness is much less expensive than that of any other parameters.

  • PDF

An Analysis on the Stability for Pylon Types of Cable-Stayed Bridge (사장교 주탑 형상에 따른 안정해석)

  • 임정열;윤영만;안주옥
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.246-252
    • /
    • 2000
  • The nonlinearity of a cable-stayed bridge results in the large displacement of main girder due to a long span, the large axial forces reduce the catenary action of cables and the flexural stiffness. Therefore, the static and dynamic behavior of pylon for a cable-stayed bridge plays an important role in determining its safety. This study was performed to find the behavior of pylon of cable-stayed bridge for the first-order analysis considering of axial load only and for the second-order analysis considering of lateral deflection due to axial load. The axial force and moment values of pylon were different from the results of the first-order analysis and second-order analysis according to pylon shape and cross beam stiffness when the pylon was subjected to earthquake and wind loads. In the second-order analysis, comparing the numerical values of the member forces for the dynamic analysis, types 3 and 4 (A type) were relatively more advantageons types than types 1 and 2 (H type). Considering the stability for pylon of cable-stayed bridge (whole structural system), types 3 and 4 (A type) with pre-buckling of girder were proper types than types 1 and 2 (H type) with buckling of pylon.

  • PDF

Numerical simulation by the finite element method of the constructive steps of a precast prestressed segmental bridge

  • Gabriela G., Machado;Americo Campos, Filho;Paula M., Lazzari;Bruna M., Lazzari;Alexandre R., Pacheco
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.163-177
    • /
    • 2023
  • The design of segmental bridges, a structure that typically employs precast prestressed concrete elements and the balanced cantilever construction method for the deck, may demand a highly complex structural analysis for increased precision of the results. This work presents a comprehensive numerical analysis of a 3D finite element model using the software ANSYS, version 21.2, to simulate the constructive deck stages of the New Guaiba Bridge, a structure located in Porto Alegre city, southern Brazil. The materials concrete and steel were considered viscoelastic. The concrete used a Generalized Kelvin model, with subroutines written in FORTRAN and added to the main model through the customization tool UPF (User Programmable Features). The steel prestressing tendons used a Generalized Maxwell model available in ANSYS. The balanced cantilever constructive steps of a span of the New Guaiba Bridge were then numerically simulated to follow the actual constructive sequence of the bridge. A comparison between the results obtained with the numerical model and the actual vertical displacement data monitored during the bridge's construction was carried out, showing a good correlation.

Suppression of aerodynamic response of suspension bridges during erection and after completion by using tuned mass dampers

  • Boonyapinyo, Virote;Aksorn, Adul;Lukkunaprasit, Panitan
    • Wind and Structures
    • /
    • v.10 no.1
    • /
    • pp.1-22
    • /
    • 2007
  • The suppression of aerodynamic response of long-span suspension bridges during erection and after completion by using single TMD and multi TMD is presented in this paper. An advanced finite-element-based aerodynamic model that can be used to analyze both flutter instability and buffeting response in the time domain is also proposed. The frequency-dependent flutter derivatives are transferred into a time-dependent rational function, through which the coupling effects of three-dimensional aerodynamic motions under gusty winds can be accurately considered. The modal damping of a structure-TMD system is analyzed by the state-space approach. The numerical examples are performed on the Akashi Kaikyo Bridge with a main span of 1990 m. The bridge is idealized by a three-dimensional finite-element model consisting of 681 nodes. The results show that when the wind velocity is low, about 20 m/s, the multi TMD type 1 (the vertical and horizontal TMD with 1% mass ratio in each direction together with the torsional TMD with ratio of 1% mass moment of inertia) can significantly reduce the buffeting response in vertical, horizontal and torsional directions by 8.6-13%. When the wind velocity increases to 40 m/s, the control efficiency of a multi TMD in reducing the torsional buffeting response increases greatly to 28%. However, its control efficiency in the vertical and horizontal directions reduces. The results also indicate that the critical wind velocity for flutter instability during erection is significantly lower than that of the completed bridge. By pylon-to-midspan configuration, the minimum critical wind velocity of 57.70 m/s occurs at stage of 85% deck completion.

The Analysis of Two Span Continuous Composite Plate Girder Bridge by ALFD (ALFD해석방법에 의한 2경간합성교 연구)

  • 한상철
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.4
    • /
    • pp.115-128
    • /
    • 1992
  • The main purpose of this study was to determine whether the inelastic moment-rotation character-istics defined by the lower-bound curve permit economical ALFD for noncompact plate gilders. The study was also intended to determine the benefits of improving the moment-rotation to illustrate the ar plication of the ALFD to noncompact plate girders and to show the Influence of various parameters on the design process. To accomplish these objectives, 34 preliminary designs were made by ALFD or LFD or WSD. In the study, this method of analysis is described first. Next, the design procedures are described. Finally, the resulting designs are presented and discussed.

  • PDF

Am Experimental Study on the Flexural Behavior after Crack Initiation of PSC I-Girder (PSC-I 거더의 균열 발생 이후의 휨거동에 관한 실험적 연구)

  • 심종성;오홍섭;김민수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.541-544
    • /
    • 1999
  • The main objective of this study is to develope the PSC-I girder for long span bridge. This study investigates the structural behavior of Postcracking stage and efficiency of proposed PSC-I girder using 1/2 scaled prototype beam specimen. Three specimens are tested under three point static loading system. Ideally, the Load-displacement relationship is trilinear. The crack patterns and failure mode of each specimen are reported in this paper and they are compared to each other with ductility and strength.

  • PDF

Traffic Safety & Passenger Comforts of a Suspension Bridge Considering Seismic Loads (고속열차 주행 시 지진하중을 고려한 현수교의 주행안전성 및 승차감 분석)

  • Kim, Sung-Il;Kim, Dong-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.1
    • /
    • pp.57-65
    • /
    • 2011
  • The estimation of traffic safety and passenger comfort when the train is running on the bridge is a estimation unique to the railway bridge. The standards for such estimation are included in the Eurocode, the Shinkansen design criteria, and the design guideline of the Honam High-speed railway. The items are bridge responses including vertical displacement of bridge, vertical acceleration, and slab twist. In principle, a direct estimation based on the train responses has to take place. However, the estimation based on the bridge responses can be seen as an indirect estimation procedure for the convenience of the bridge designer. First, it is general practice that traffic safety can be verified as a derailment coefficient or wheel load decrement The general method of estimating passenger comfort is to calculate the acceleration within the train car-body. Various international indexes have been presented for this method. In the present study, traffic safety and passenger comforts are estimated directly by bridge/train interaction analysis. The acceleration and wheel load decrement are obtained for the estimation of traffic safety and passenger comforts of a suspension bridge which has main span length of 300m. Also, the consideration of seismic load with simultaneous action of moving train is done for bridge/train/earthquake interaction analysis.

Improved definition of dynamic load allowance factor for highway bridges

  • Zhou, Yongjun;Ma, Zhongguo John;Zhao, Yu;Shi, Xiongwei;He, Shuanhai
    • Structural Engineering and Mechanics
    • /
    • v.54 no.3
    • /
    • pp.561-577
    • /
    • 2015
  • The main objective of this paper is to study the dynamic load allowance (DLA) calculation methods for bridges according to the dynamic response curve. A simply-supported concrete bridge with a smooth road surface was taken as an example. A half-vehicle model was employed to calculate the dynamic response of deflection and bending moment in the mid-span section under different vehicle speeds using the vehicle-bridge coupling method. Firstly, DLAs from the conventional methods and code provisions were analyzed and critically evaluated. Then, two improved computing approaches for DLA were proposed. In the first approach, the maximum dynamic response and its corresponding static response or its corresponding minimum response were selected to calculate DLA. The second approach utilized weighted average method to take account of multi-local DLAs. Finally, the DLAs from two approaches were compared with those from other methods. The results show that DLAs obtained from the proposed approaches are greater than those from the conventional methods, which indicate that the current conventional methods underestimate the dynamic response of the structure. The authors recommend that the weighted average method based on experiments be used to compute DLAs because it can reflect the vehicle's whole impact on the bridge.

Design of Vam Cong Cable Stayed Bridge in Vietnam (베트남 밤콩 사장교의 설계)

  • Lee, Yong-Jin;Kang, Jeong-Woon;Bae, Sang-Woon;Yun, Yeon-Suk;Lho, Byeong-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.2
    • /
    • pp.120-127
    • /
    • 2013
  • Vam Cong Cable Stayed Bridge which has 450m main span length is one of the Central Mekong Delta Region Connectivity Project and is located in Cuu Long Delta Region. It has steel-concrete composite girder with 4 lane and the type of cable is multi strand cable. The improved H-shape pylon and cast-in-place bored piles were applied. High strength concrete is applied for pylon, precast concrete slab and Cast-in-Situ concrete pile to ensure the structural safety. The present paper describe the design specifications and main features of Vam Cong Cable Stayed Bridge design.