• Title/Summary/Keyword: main reinforcement

Search Result 617, Processing Time 0.023 seconds

Push-out tests on stud shear connectors with constrained structure of steel-concrete composite beams

  • Qi, Jingjing;Xie, Zuwei;Cao, Hua;Huang, Zhi;Lv, Weirong;Shi, Weihua
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.789-798
    • /
    • 2022
  • The stud shear connector is the main force transfer member in the steel-concrete composite member, and the mechanical behavior is very complicated in the concrete. The concrete around the stud is subjected to the pry-out local pressure concentration of the stud, which can easily produce splitting mirco-cracks. In order to solve the problem of pry-out local splitting of stud shear connector, a kind of stud shear connector with constraint measure is proposed in this paper. Through the push-out test, the interface shear behavior of the new stud shear connector between steel and concrete flange plate was studied, and the difference between the new stud shear connector and the traditional stud connector was compared. The results show that the stud shear connector with constraint measure can effectively avoid the adverse effect of local pressure splitting by relying on its own constraint measure. The shear stiffness of the interface between steel and concrete flange plates is greatly improved, which provides a theoretical basis for the design of strong connection coefficient of steel-concrete composite structures.

A comparative study on the seismic provisions of different codes for RC buildings

  • Bilgin, Huseyin;Hadzima-Nyarko, Marijana;Isik, Ercan;Ozmen, Hayri Baytan;Harirchian, Ehsan
    • Structural Engineering and Mechanics
    • /
    • v.83 no.2
    • /
    • pp.195-206
    • /
    • 2022
  • Significant structural damages due to earthquakes reveal the importance of seismic design provisions. This paper presents a comparison between the seismic design provisions of Albania, Croatia, Iran, and Turkey for the design of mid-rise reinforced-concrete (RC) frames. Information on the historical development of the considered provisions are given. The code provisions are compared, illustrating the main differences in the minimum requirements for column and beam detailing and analysis for mid-rise RC frames. 4-story, 5-story, and 6-story buildings are designed according to each design code, and their performance is evaluated comparatively by using a displacement-based adaptive pushover procedure and eigenvalue analysis. It is observed that recent Turkish code has the highest and Albanian code has the lowest level of requirements in terms of member size and reinforcement detailing. The considered models indicate 15%, 20% and 50%, lower period values than the Croatia, Iran and Albania buildings, respectively. Additionally, building models per Croatia, Iran and Albania codes have 30%, 35% and 65% less base shear capacity when compared to Turkish building codes. Building models per Croatia and Iran codes indicate similar properties both in terms of strength and stiffness.

Structural behavior of concrete walls reinforced with ferrocement laminates

  • Shaheen, Yousry B.I.;Refat, Hala M.;Mahmoud, Ashraf M.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.455-471
    • /
    • 2021
  • The present work focuses on experimental and numerical performance of the ferrocement RC walls reinforced with welded steel mesh, expanded steel mesh, fiber glass mesh and tensar mesh individually. The experimental program comprised twelve RC walls having the dimensions of 450 mm×100 mm×1000 mm under concentric compression loadings. The studied variables are the type of reinforcing materials, the number of mesh layers and volume fraction of reinforcement. The main aim is to assess the influence of engaging the new inventive materials in reinforcing the composite RC walls. Non-linear finite element analysis; (NLFEA) was carried out to simulate the behavior of the composite walls employing ANSYS-10.0 Software. Parametric study is also demonstrated to check out the variables that can mainly influence the mechanical behavior of the model such as the change of wall dimensions. The obtained numerical results indicated the acceptable accuracy of FE simulations in the estimation of experimental values. In addition, the strength gained of specimens reinforced with welded steel mesh was higher by amount 40% compared with those reinforced with expanded steel mesh. Ferrocement specimens tested under axial compression loadings exhibit superior ultimate loads and energy absorbing capacity compared to the conventional reinforced concrete one.

Valorization of Cork Waste to Improve the Anti-Corrosion Properties of Concrete Reinforcements

  • Belkhir, S.;Bensabra, H.;Chopart, J.P.
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.100-110
    • /
    • 2022
  • Corrosion of steel reinforcement is the most important mode of concrete structures damages. It strongly depends on the composition and physicochemical properties of the cementitious medium. The use of waste materials as lightweight aggregates in concrete is environmentally recommended in polluted environments such as marine and/or industrial atmospheres in order to reduce its porosity and ensure the requested protection of reinforcing steel. The present study investigated the effect of waste cork addition on corrosion resistance of steel rebar in mortar specimen prepared in the laboratory. The main objective of this study was to improve the corrosion resistance of reinforcing steel. Another objective of this study was to valorize this ecological product and preserve the environment. Results obtained from various electrochemical tests indicated that the presence of a fine cork powder substantially improved the corrosion resistance of steel in the mortar contaminated by chloride ions. This improvement was reflected by a notable decrease in corrosion current density and a shift of corrosion potential of the steel towards more noble values. Moreover, the presence of a fine cork powder in the mortar had no adverse effect on its mechanical properties.

Mechanical and wear properties evaluation of Al/Al2O3 composites fabricated by combined compo-casting and WARB process

  • Vini, Mohamad Heydari;Daneshmand, Saeed
    • Advances in Computational Design
    • /
    • v.7 no.2
    • /
    • pp.129-137
    • /
    • 2022
  • Compo-casting method is one of the popular technique to produce metal based matrix composites. But, one of the main challenges in this process is un-uniform spreading of reinforced subdivisions (particles) inside the metallic matrix and the lack of desirable mechanical properties of the final produced composites due to the low bonding strength among the metal matrix and reinforcement particles. To remove these difficulties and to promote the mechanical properties of these kind of composites, the WARM ARB technique was utilized as supplementary technique to heighten the mechanical and microstructural evolution of the casted Al/Al2O3 composite strips. The microstructure evolution and mechanical properties of these composites have been considered versus different WARM ARB cycles by tensile test, average Vickers micro hardness test, wear test and scanning electron microscopy (SEM). The SEM results revealed that during the higher warm- ARB cycles, big alumina clusters are broken and make a uniform distribution of alumina particles. It was shown that cumulating the forming cycles improved the mechanical properties of composites. In general, combined compo-casting and ARB process would consent making Al/Al2O3 composites with high consistency, good microstructural and mechanical properties.

[Retracted]Structural performance of RC beams with openings reinforced with composite materials

  • Shaheen, Yousry B.I.;Mahmoud, Ashraf M.
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.475-493
    • /
    • 2022
  • The results of research focusing on the experimental and numerical performance of ferrocement RC beams with openings reinforced with welded steel mesh, expanded steel mesh, fiber glass mesh, and polyethylene mesh independently are presented in this article. Casting and testing of fourteen reinforced concrete beams with dimensions of 200×100×2000 mm under concentric compression loadings were part of the research program. The type of reinforcing materials, the volume fraction of reinforcement, the number of mesh layers, and the number of stirrups are the major parameters that change. The main goal is to understand the impact of using new appealing materials in reinforcing RC beams with openings. Using ANSYS-16.0 Software, nonlinear finite element analysis (NLFEA) was used to demonstrate the behavior of composite RC beams with openings. A parametric study is also conducted to discuss the variables that can have the greatest impact on the mechanical behavior of the proposed model, such as the number of openings. The obtained experimental and numerical results demonstrated the FE simulations' acceptable accuracy in estimating experimental values. Furthermore, demonstrating that the strength gained of specimens reinforced with fiber glass meshes was reduced by approximately 38% when compared to specimens reinforced with expanded or welded steel meshes is significant. In addition, when compared to welded steel meshes, using expanded steel meshes in reinforcing RC beams with openings results in a 16 percent increase in strength. In general, when ferrocement beams with openings are tested under concentric loadings, they show higher-level ultimate loads and energy-absorbing capacity than traditional RC beams.

[Retracted]Structural behavior of RC channel slabs strengthened with ferrocement

  • Yousry B.I. Shaheen;Ashraf M. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.793-815
    • /
    • 2023
  • The current study looks at the experimental and numerical performance of ferrocement RC channel slabs reinforced with welded steel mesh, expanded steel mesh, and fiber glass mesh individually. Ten RC channel slabs with dimensions of 500 mm×40 mm×2500 mm were subjected to flexural loadings as part of the testing program. The type of reinforcing materials, the number of mesh layers, and the reinforcement volume fraction are the key parameters that can be changed. The main goal is to determine the impact of using new inventive materials to reinforce composite RC channel slabs. Using ANSYS -16.0 Software, nonlinear finite element analysis (NLFEA) was used to simulate the behavior of composite channel slabs. Parametric study is also demonstrated to identify variables that can have a significant impact on the model's mechanical behavior, such as changes in slab dimensions. The obtained experimental and numerical results indicated that FE simulations had acceptable accuracy in estimating experimental values. Also, it's significant to demonstrate that specimens reinforced with fiber glass meshes gained approximately 12% less strength than specimens reinforced with expanded or welded steel meshes. In addition, Welded steel meshes provide 24% increase in strength over expanded steel meshes when reinforcing RC channel slabs. In general, ferrocement specimens tested under flexural loadings outperform conventional reinforced concrete specimens in terms of ultimate loads and energy absorbing capacity.

A study on behavioral characteristics of concrete lining based on the equations of relaxed rock loads (이완하중 산정식에 따른 콘크리트라이닝 거동특성에 관한 연구)

  • Kim, Sang-Hwan;Park, Inn-Joon;Moon, Hoon-Ki;Shin, Yong-Suk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.6
    • /
    • pp.443-450
    • /
    • 2010
  • A concrete lining of NATM tunnel had been considered as interior materials. But recently we consider it as structural materials. Therefore we must consider various loads. Relaxed rock load is a main load which decides thickness and reinforcement presence of concrete lining. In practice conservatively, Terzaghi's rock load theory has been accepted to estimate relaxed rock loads in urban subway tunnel design. This study investigates the equations of relaxed rock loads used in the design of NATM concrete lining. Structural analysis are executed based on various equations of relaxed rock loads, and concrete lining forces are compared.

The Effect of the Contingent Liabilities Caused by Project Financing of the Domestic Construction Firms

  • Kang, Namhee;Kim, Hyunjung;Choi, Jaehyun
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.683-684
    • /
    • 2015
  • Project Financing (PF) is the long-term financing of infrastructure and industrial projects based upon the projected cash flows of the project rather than the balance sheets of its sponsors. However, the financial institution, the subject of financing in the case of PF in Korea, the lack of validation system of business, rather than to assess the feasibility of the project, requested a credit reinforcement to the construction company, the fact is Construction Company on loans of the employer is the guarantor or debt argument commitments accordingly. As a result, PF contingent liabilities, which are indirect debt, are triggered in the construction company, not included in the financial statements, along with the disclosure standards established according to 2009 PF contingent liabilities, and major can be a management item. In this study, PF contingent liabilities is of Pearson of the index and the PF debt ratio showing the main financial ratios and risk by classifying the credit rating and contractors Ranking of construction companies in order to analyze the impact on the financial condition of the company was performed correlation analyzes, through the Pearson correlation coefficient analysis indicated quantitative or negative relationship to derive the explicit indication.

  • PDF

Comparative Analysis of Bearing Capacity by Road Pavement Method Using Geocell (Geocell을 활용한 도로포장 공법별 지지력 비교 분석)

  • Suhyung Lee;Hyunwoo Jin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.12
    • /
    • pp.19-29
    • /
    • 2023
  • The main problem with roads is that cracks and settlement occur over time due to loads acting from the surface layer. One way to solve this problem is to use Geocell. Geocell can be used for structural reinforcement for erosion prevention, ground stabilization on flat and steep slopes, load bearing, and ground preservation. In this study, analyzed road pavement application cases using Geocell and purpose of this study is to analyze the bearing capacity of a road paving method including Geocell using field tests and LFWD(Light Falling Weight Deflectometer) equipment. In addition, the bearing capacity was compared and analyzed with the existing traditional road pavement method.