• Title/Summary/Keyword: main reinforcement

Search Result 617, Processing Time 0.019 seconds

Prediction of chloride penetration into hardening concrete (경화중 콘크리트의 염해 침투성능에 관한 연구)

  • Fan, Wei-Jie;Wang, Xiao-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.50-51
    • /
    • 2015
  • In marine and coastal environments, penetration of chloride ions is one of the main mechanisms causing concrete reinforcement corrosion. Currently, most of experimental investigations about submerged penetration of chloride ions are started after the four weeks standard curing of concrete. The further hydration of cement and reduction of chloride diffusivity during submerged penetration period are ignored. To overcome this weak point, this paper presents a numerical procedure to analyze simultaneously cement hydration reaction and chloride ion penetration process. First, using a cement hydration model, degree of hydration and phase volume fractions of hardening concrete are determined. Second, the dependences of chloride diffusivity and chloride binding capacity on age of concrete are clarified. Third, chloride profiles in hardening concrete are calculated. The proposed numerical procedure is verified by using chloride penetration test results of concrete with different mixing proportions.

  • PDF

Ultimate Tensile Analysis of Reinforced Concrete Containment Panel by using ABAQUS Program (상용프로그램(ABAQUS)을 이용한 원전 격납건물 RC Panel의 극한 인장해석)

  • 김남식;정대성;김광수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.577-584
    • /
    • 2003
  • Tension tests of half-thickness concrete containment wall elements and material tests were conducted to derive a crack pattern and constitutive law of concrete. Main test variables are reinforcement ratio and the applied load ratio in two direction, and its effect on the behavior of reinforced concrete panel subjected to biaxial tension is investigated. Based on the test results, analytical expression is derived for the stress-strain relationship of concrete in tension. Ultimate analyses of reinforced concrete panels are carried out by a general purpose structural analysis computer program(ABAQUS), and its results are compared with the test results. The present analysis focuses on the effects of pre-analysis prior to test of specimens. These ultimate tensile analyses as pre-analysis are essential and important to design an effectual scheme of test.

  • PDF

Experimental study on seismic performance of coupling beams not designed for ductility

  • Lam, S.S.E.;Wu, B.;Liu, Z.Q.;Wong, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.3
    • /
    • pp.317-334
    • /
    • 2008
  • Seismic performance of coupling beams not designed for ductility is examined. Eight 1:4 scale coupling beam specimens, with seven reinforced concrete sections and one composite section, were tested under cycles of push-pull action. Characteristics of the specimens include moderate shear span ratio in the range of 2.5-3.5, high main reinforcement ratio at 3-4% and small to large stirrup spacing with 90- degree hooks. All the reinforced concrete specimens failed in a brittle manner. Displacement ductility of specimens with large stirrup spacing (${\geq}$140 mm) is in the range of 3 to 5. Seismic performance of the specimens is also examined using the ultimate drift angle and the amount of energy dissipated. Correlating the test data, an empirical relationship is proposed to estimate the ultimate drift angle of a class of coupling beams considered in the study not designed for ductility.

Upgrading flexural performance of prefabricated sandwich panels under vertical loading

  • Kabir, M.Z.;Rezaifar, O.;Rahbar, M.R.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.3
    • /
    • pp.277-295
    • /
    • 2007
  • 3-D wall panels are used in construction of exterior and interior bearing and non-load bearing walls and floors of building of all types of construction. Fast construction, thermal insulation, reduced labor expense and weight saving are the most well pronounced advantage of such precast system. When the structural performance is concerned, the main disadvantage of 3D panel, when used as floor slab, is their brittleness in flexure. The current study focuses on upgrading ductility and load carrying capacity of 3D slabs in two different ways; using additional tension reinforcement, and inserting a longitudinal concentrated beam. The research is carried on both experimentally and numerically. The structural performance in terms of load carrying capacity and flexural ductility are discussed in details. The obtained results could give better understanding and design consideration of such prefabricated system.

Flow and Structural Analysis at Welding Fume of Automatic Gantry Robot - CFD/CAE and Automatic Convergence Study - (자동 겐트리 로봇의 용접 흄 유동 및 구조해석 - CFD/CAE 및 자동화 융합 연구 -)

  • Jang, Sung-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.158-163
    • /
    • 2012
  • This study investigates numerical analysis for robot welder fume flow and gantry structure. The solvers are STAR-CCM+ and ANSYS workbench used on flow and structural analysis. The results show that fume is diffused in factory when the welding fume is remove at dust collector. But dust collector intercepts the fume diffusion into workroom by removing most of welding fume. Structure analysis result shows that the reinforcement rod is evaluated to main the safety by supporting sufficient structure.

The Study on Development of Automatic Main Reinforcement Placing System of Columns for RC Structures based on Parametric Technology (파라메트릭 기술기반 철근콘크리트 구조물의 기둥부재 주철근 자동배근시스템 구축에 관한 연구)

  • Cho, Young-Sang;Hong, Seong-Uk;Kim, Yu-Ri;Lee, Je-Hyuk
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.484-487
    • /
    • 2010
  • 본 논문에서는 BIM(Building Information Modeling)의 핵심기술인 파라메트릭 기술을 기반으로 하여 철근콘크리트 구조물의 기둥부재 주철근 자동배근시스템을 구축함으로써 기존 프로그램에서 사용자가 직접 입력해야하는 변수의 수를 최소화하고 사용성과 정확성을 높이는 것을 목적으로 한다. 기존 철근배근 형상 자동 모델링에서 기둥철근의 자동 모델링은 기둥단면이 변하는 부분에서의 철근 배근과 정착 및 이음길이를 고려하지 않고 있다. 만약 고려하더라도 이용자가 직접 입력하는 방식이기 때문에 규모가 큰 건물일 경우 방대한 정보의 처리 미숙으로 인해 정확한 모델링을 기대하기 어려운 실정이다. 본 연구에서는 기둥 부재에 대하여 대상 건물을 선정하고 구조해석 모델링을 구축한 후 구조해석 결과 데이터베이스를 추출하여 얻은 정보와 건축구조설계기준에 따른 정착 및 이음 길이 산정에 관한 알고리즘을 구축하여 철근배근 형상 자동화 모듈에 적용하여 배근 자동 설계 및 자동 형상화 모듈을 생성하였다.

  • PDF

Stochastic finite element method homogenization of heat conduction problem in fiber composites

  • Kaminski, Marcin
    • Structural Engineering and Mechanics
    • /
    • v.11 no.4
    • /
    • pp.373-392
    • /
    • 2001
  • The main idea behind the paper is to present two alternative methods of homogenization of the heat conduction problem in composite materials, where the heat conductivity coefficients are assumed to be random variables. These two methods are the Monte-Carlo simulation (MCS) technique and the second order perturbation second probabilistic moment method, with its computational implementation known as the Stochastic Finite Element Method (SFEM). From the mathematical point of view, the deterministic homogenization method, being extended to probabilistic spaces, is based on the effective modules approach. Numerical results obtained in the paper allow to compare MCS against the SFEM and, on the other hand, to verify the sensitivity of effective heat conductivity probabilistic moments to the reinforcement ratio. These computational studies are provided in the range of up to fourth order probabilistic moments of effective conductivity coefficient and compared with probabilistic characteristics of the Voigt-Reuss bounds.

Simulation of corroded RC structures using a three-dimensional irregular lattice model

  • Kim, Kunhwi;Bolander, John E.;Lim, Yun Mook
    • Structural Engineering and Mechanics
    • /
    • v.41 no.5
    • /
    • pp.645-662
    • /
    • 2012
  • Deteriorative effects of steel corrosion on the structural response of reinforced concrete are simulated for varying degrees of corrosion. The simulation approach is based on a three-dimensional irregular lattice model of the bulk concrete, in which fracture is modeled using a crack band approach that conserves fracture energy. Frame elements and bond link elements represent the reinforcing steel and its interface with the concrete, respectively. Polylinear stress-slip properties of the link elements are determined, for several degrees of corrosion, through comparisons with direct pullout tests reported in the literature. The link properties are then used for the lattice modeling of reinforced concrete beams with similar degrees of corrosion of the main reinforcing steel. The model is successful in simulating several important effects of steel corrosion, including increased deflections, changes in flexural cracking behavior, and reduced yield load of the beam specimens.

초고강도 콘크리트의 재료특성 및 휨 거동에 관한 실험적 연구

  • 장일영;이호범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.107-112
    • /
    • 1991
  • The object of this study is to investigate material characteristics and flexural behavior of high strength concrete. Principal causes of variations of high compressive strength include the strength-producing capabilities of cement and silica hume. Compressive strength of 1200 kgf/$\textrm{cm}^2$ is introduced for identifying the effect of the variation of the size of porocity and alternative method of measurement, Acoustic Emition method, is applied to examine the phenominon of concrete failure. The main test variables in the beam element are tensile steel ratios, presence of shear reinforcement, and change of steel shape. The estimation of stress block in the flexural test of this element tends to support the present theory and may suggest a desirable shape of the stress block.

  • PDF

Corrosion Characteristics of Steel Reinforcements Induced by Internal Chlorides in Concrete and Determination of Chloride Thresholds (콘크리트 내부염소이온에 의한 철근의 부식특성 및 임계 염소이온농도의 결정 연구)

  • 오병환;장승엽;신용석
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.193-203
    • /
    • 1999
  • The corrosion of steel reinforcements in concrete is of great concern in recent years. This study is focused on the corrosion behavior of steel bars induced by internal chlorides in concrete at early ages. The main objective of this study is to determine the chloride thresholds causing depassivation and active corrosion of steel reinforcement in concrete. To examine the threshold concentration of chloride ion, the half-cell potential, chemical composition of expressed pore solutions of concrete and the rate of corosion area of the specimens were measured. Major variables include the added amount of chlorides in concrete, types of binders, and water-to-binder ration. From the present comprehensive experimental results, the factors influencing chloride-induced corrosion are investigated, and the chloride thresholds causing active corrosion of steel bars are proposed. The present study will enable to specify the realistic chloride limit in concrete which can be used in the future technical specification.