• Title/Summary/Keyword: main reinforcement

Search Result 617, Processing Time 0.027 seconds

The principles of artificial intelligence and its applications in dentistry

  • Yoohyun Lee;Seung-Ho Ohk
    • International Journal of Oral Biology
    • /
    • v.48 no.4
    • /
    • pp.45-49
    • /
    • 2023
  • Digital dentistry has witnessed significant advancements in recent years, driven by extensive research following the introduction of cutting-edge technologies such as CAD/CAM and 3D oral scanners. Until now, 2D images obtained via x-ray or CT scans were critical to detect anomalies and for decision-making. This review describes the main principles and applications of supervised, unsupervised, and reinforcement learning in medical applications. In this context, we present a diverse range of artificial intelligence networks with potential applications in dentistry, accompanied by existing results in the field.

3D FE modeling and parametric analysis of steel fiber reinforced concrete haunched beams

  • Al Jawahery, Mohammed S.;Cevik, Abdulkadir;Gulsan, Mehmet Eren
    • Advances in concrete construction
    • /
    • v.13 no.1
    • /
    • pp.45-69
    • /
    • 2022
  • This paper investigates the shear behavior of reinforced concrete haunched beams (RCHBs) without stirrups. The research objective is to study the effectiveness of the ideal steel fiber (SF) ratio, which is used to resist shear strength, besides the influence of main steel reinforcement, compressive strength, and inclination angles of the haunched beam. The modeling and analysis were carried out by Finite Element Method (FE) based on a software package, called Atena-GiD 3D. The program of this study comprises two-part. One of them consists of nine results of experimental SF RCHBs which are used to identify the accuracy of FE models. The other part comprises 81 FE models, which are divided into three groups. Each group differed from another group by the area of main steel reinforcement (As) which are 226, 339, and 509 mm2. The other parameters which are considered in each group in the same quantities to study the effectiveness of them, were steel fiber volumetric ratios (0.0, 0.5, and 1.0)%, compressive strength (20.0, 40.0, 60.0) MPa, and the inclination angle of haunched beam (0.0°, 10.0°, and 15.0°). Moreover, the parametric analysis was carried out on SF RCHBs to clarify the effectiveness of each parameter on the mechanical behavior of SF RCHBs. The results show that the correlation coefficient (R2) between shear load capacities of FE proposed models and shear load capacities of experimental SF RCHBs is 0.9793, while the effective inclination angle of the haunched beam is 10° which contributes to resisting shear strength, besides the ideal ratio of steel fibers is 1% when the compressive strength of SF RCHBs is more than 20 MPa.

Shear Behavior of High-Strength Concrete Deep Beams and Comparisons with ACI Shear Design Provisions (고강도 철근콘크리트 깊은 보의 전단거동 및 ACI 전단설계 기준과의 비교)

  • 정헌수;양근혁;함영삼
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.874-882
    • /
    • 2002
  • Currently, deep beams are designed according to ACT 318-99 equations derived from experimental data for slender beams with normal-strength concrete. In addition, there is relatively limited information on high-strength concrete deep beams with shear reinforcement. The purpose of this experimental study is to investigate the shear behavior of high-strength concrete deep beams and to grasp the conservatism of ACI shear design provisions. Experimental results on the shear behavior of 22 deep beams under two equal symmetrically placed point loads are reported. compressive strength of concrete cylinder was 800kgf/$\textrm{cm}^2$, and main variables were vertical and horizontal shear reinforcement and shear span-to-overall depth ratio (а/h). Test results showed that for high-strength concrete deep beams with shear span-to-overall depth ratio exceeding 0.75, the vertical shear reinforcement more effectively resisted the shear load than horizontal shear reinforcement. In high-strength concrete deep beams, ACI shear design provisions tended to underestimate the effect of strut-tie action and vertical shear reinforcement and overestimate the ones of horizontal shear reinforcement. Based on the experimental results of high-strength concrete deep beams and shear friction theory, this study modified the equations on the shear capacity specified by the ACI provisions.

Influence of Inclined Reinforcement around Openings on the Shear Behavior of Reinforced Concrete Continuous Deep Beams (철근콘크리트 연속 깊은 보의 전단 거동에 대한 개구부 경사 보강근의 영향)

  • Chung, Heon-Soo;Sim, Jae-Il;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.171-178
    • /
    • 2007
  • Twelve reinforced concrete continuous deep beams having web openings within interior shear spans were tested to failure. All beams tested had the same geometrical dimensions. The main variables investigated were the opening size and amount of inclined reinforcement around openings. An effective inclined reinforcement factor combining the influence of the opening size and amount of inclined reinforcement on the structural behavior of the beams tested is proposed. It was observed that the load distribution, diagonal crack width, and load capacity of beams tested were greatly dependent on the effective inclined reinforcement factor which ranged from 0 to 0.171 for the test specimens. The higher this factor, the smaller the diagonal crack width and its development rate. A higher load capacity also developed in beams having effective inclined reinforcement factor above 0.077 than in the corresponding solid deep beams. A numerical technique based on the upper bound analysis of the plasticity theory is proposed to evaluate the load capacity of continuous deep beams having openings within interior shear spans. Predictions obtained from the proposed formulas are in good agreement with test results.

Confinement Effects of High Strength Reinforced Concrete Tied Columns (고강도 철근콘크리트 띠철근 기둥의 구속효과)

  • 신성우;한범석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.578-588
    • /
    • 2002
  • An experimental study was conducted to investigate the effectiveness of transverse reinforcement in reinforced concrete tied columns subjected to monotonically increasing axial compression. Eighteen large-scale columns(260$\times$260$\times$1200 mm) were tested. Effects of main variables such as the concrete compressive strength, the tie configuration, the transverse reinforcement ratio, the tie spacing, and the spatting of the concrete cover were considered. High-strength concrete columns under concentric axial loads show extremely brittle behavior unless the columns are confined with transverse reinforcement that can provide sufficiently high lateral confinement pressure There is a consistent decrease in deformability of column specimen with increasing concrete strength. Test results were compared with the previous confinement model such as modified Kent-Park, Sheikh-Uzumeri, Mander, and Saatcioglu-Razvi model. The comparison indicates that many previous models for confined concrete overestimate or underestimate the ductility of confined concrete.

Bond between Reinforcing Bars and Recycled Coarse Aggregate Concrete with respect to Reinforcement Location (철근의 위치에 따른 이형철근과 순환굵은골재 콘크리트의 부착특성)

  • Yun, Hyun-Do;Lee, Min-Jung;Jang, Yong-Heon;Bae, Kee-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1093-1096
    • /
    • 2008
  • This study investigated the bond behavior between recycled coarse aggregate (RCA) concrete and deformed reinforcing bars. The position (i.e., vertical, horizontal) and the location (i.e., 375mm, 225mm and 75 mm) of deformed bar were considered as a main test parameter in this paper. From the test results, it was found that maximum bond strength of top reinforcement was decreased compared with that of bottom reinforcement. Also bar embedded horizontally 225mm above from base could not satisfy bond strength requirement provided in CEB-FIP code. It was caused by the fact that bonded area at the bottom of horizontal reinforcement was significantly reduced by the poring water and laitance. In this specimen, the bond strength provided by bearing stress and wedging action of concrete was not fully observed.

  • PDF

Seismic improvement of infilled nonductile RC frames with external mesh reinforcement and plaster composite

  • Kamanli, Mehmet;Korkmaz, Hasan H.;Unal, Alptug;Balik, Fatih S.;Bahadir, Fatih;Cogurcu, Mustafa T.
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.761-778
    • /
    • 2015
  • The objective of this paper is to report the result of an experimental program conducted on the strengthening of nonductile RC frames by using external mesh reinforcement and plaster application. The main objective was to test an alternative strengthening technique for reinforced concrete buildings, which could be applied with minimum disturbance to the occupants. Generic specimen is two floors and one bay RC frame in 1/2 scales. The basic aim of tested strengthening techniques is to upgrade strength, ductility and stiffness of the member and/or the structural system. Six specimens, two of which were reference specimens and the remaining four of which had deficient steel detailing and poor concrete quality were strengthened and tested in an experimental program under cyclic loading. The parameters of the experimental study are mesh reinforcement ratio and plaster thickness of the infilled wall. The effects of the mesh reinforced plaster application for strengthening on behavior, strength, stiffness, failure mode and ductility of the specimens were investigated. Premature and unexpected failure mode has been observed at first and second specimens failed due to inadequate plaster thickness. Also third strengthened specimen failed due to inadequate lap splice of the external mesh reinforcement. The last modified specimen behaved satisfactorily with higher ultimate load carrying capacity. Externally reinforced infill wall composites improve seismic behavior by increasing lateral strength, lateral stiffness, and energy dissipation capacity of reinforced concrete buildings, and limit both structural and nonstructural damages caused by earthquakes.

Experimental Study on Structural Performance of Recycled Coarse Aggregate Concrete Confined by Steel Spirals (나선철근으로 횡구속된 순환골재 콘크리트의 구조적 성능에 관한 실험적 연구)

  • Kim, Sang Woo;Jung, Chang Kyo;Lee, Sun Hee;Kim, Kil Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.103-111
    • /
    • 2011
  • This paper estimated the structural behavior of recycled aggregate concrete confined with spiral reinforcement. The main test parameter was designed to be the type of aggregates and the steel ratio of spirals. A total of 18 specimens were cast and tested in this study. All the specimens had a diameter of 150mm and a height of 300mm. The specimens can be divided into two groups, based on the type of coarse aggregate used. The ratio of spiral reinforcement was varied from 0 % to 1.75%. To measure the axial and lateral deformations of the specimens, a total of six linear variation displacement transducers (LVDTs) were installed at each specimen. Furthermore strain gauges were also attached to the steel spirals to obtain the strain of spiral reinforcements. From the experimental results, the structural performance of recycled aggregate concrete specimens confined by steel spirals was similar to that of natural aggregate concrete specimens regardless of the ratio of spiral reinforcement.

The effects of a maternal nursing competency reinforcement program on nursing students' problem-solving ability, emotional intelligence, self-directed learning ability, and maternal nursing performance in Korea: a randomized controlled trial

  • Kim, Sun-Hee;Lee, Bo Gyeong
    • Women's Health Nursing
    • /
    • v.27 no.3
    • /
    • pp.230-242
    • /
    • 2021
  • Purpose: The purpose of this study was to develop a maternal nursing competency reinforcement program for nursing students and assess the program's effectiveness in Korea. Methods: The maternal nursing competency reinforcement program was developed following the ADDIE model. This study employed an explanatory sequential mixed methods design that applied a non-blinded, randomized controlled trial with nursing students (28 experimental, 33 control) followed by open-ended interviews with a subset (n=7). Data were analyzed by both qualitative and quantitative analysis methods. Results: Repeated measures analysis of variance showed that significant differences according to group and time in maternal nursing performance; assessment of and intervention in postpartum uterine involution and vaginal discharge (F=24.04, p<.001), assessment of and intervention in amniotic membrane rupture (F=36.39, p<.001), assessment of and intervention in delivery process through vaginal examination (F=32.42, p<.001), and nursing care of patients undergoing induced labor (F=48.03, p<.001). Group and time improvements were also noted for problem-solving ability (F=9.73, p<.001) and emotional intelligence (F=4.32, p=.016). There were significant differences between groups in self-directed learning ability (F=13.09, p=.001), but not over time. The three main categories derived from content analysis include "learning with a colleague by simulation promotes self-reflection and learning," "improvement in maternal nursing knowledge and performance by learning various countermeasures," and "learning of emotionally supportive care, but being insufficient." Conclusion: The maternal nursing competency reinforcement program can be effectively utilized to improve maternal nursing performance, problem-solving ability, and emotional intelligence for nursing students.

An Experimental Study on the Bond Splitting Strength between Composite Concrete and Deformed rebar (복합콘크리트와 이형 철근간의 부착강도에 관한 실험적 연구)

  • Yoon, Seung-Joe;Ho, SeungWoung
    • Journal of the Regional Association of Architectural Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.87-92
    • /
    • 2019
  • To relieve noise between floors in Korea, recent domestic and overseas studies have been developing materials that have the properties of ceramic, which is an inorganic compound, and polymer, which is an organic compound, to introduce a new function to polymer. This study conducted a bending strength experiment between re-bar and new composite concrete mixing POSS (Polyhedral Oligomeric Silses-quioxanes) nano complex on the inside of concrete, and by assembling the inside of each concrete with 3 and 4 main re-bars as an experiment to supplement various problems that occur by the expression of this strength and the distribution of the reinforcement. The number of the main re-bars. and the direction of laying the concrete were applied as the principal variables of the experiment. Upon experiment, there were no differences in the bond strength based on the location of the main re-bar, and a 2 % increase in the bond strength was shown in the specimen laid in the same direction as the main re-bar in comparison to that of the specimen laid in a different direction from the main re-bar. The experiment results displayed that the composite concrete had uniform performance based on the rapid reaction speed of POSS nano complex.