• Title/Summary/Keyword: magnitude of errors

Search Result 182, Processing Time 0.025 seconds

Modeling of Piano Sound Using Method of Line-Segment Approximation and Curve Fitting (선분 근사법과 곡선의 적합성을 이용한 피아노 음의 모델링)

  • Lim, Hun;Chong, Ui-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.86-91
    • /
    • 2000
  • In this paper, we will discuss the characteristics of the magnitude and the phase of the piano sound in frequency domain by using the FFT(Fast Fourier Transform). The method deciding the parameters representing those sounds through the mathematical model is described. We used the curve fitting method for the modeling of the harmonic part of the sound including the fundamental frequency in order to minimize the errors between original sounds and modeled sounds. furthermore, we used the line segment approximation method for the modeling of the noise part around fundamental frequency. We also applied the same method for the phase model and could get the modeled sound to be similar to the original sound using the parameters. Therefore the high compression ratio comparing the modeled sound to the original sound is achieved.

  • PDF

A study on the monitoring of cooling time using the change in the magnitude of mold vibration in injection molding (사출성형에서 공정 중 금형의 진동 크기 변화를 활용한 냉각시간 모니터링에 대한 연구)

  • Yeung, Chris;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.45-49
    • /
    • 2021
  • In this study, during the injection molding process, a device was manufactured and evaluated that calculates a cooling time by measuring a vibration signal generated from a mold using an acceleration. The last two parts, one of which has a large magnitude change in the measured vibration signal of a mold, were divided into a cooling start section (paking end section) and a mold opening section, and the time difference at the relevant points was calculated as the cooling time. The cooling time was monitored on a 5-inch light guide plate mold by applying the method. The manufactured device was attached to a fixed base of mold to measure the cooling time, and data was obtained remotely using Bluetooth technology. Then, the measured cooling time was compared with the cooling time set in the injection molding machine to evaluate the accuracy. As a result of the experiment, the cooling times measured by the devices were 15.675±0.024 sec, 20.637±0.014 sec and 25.623±0.079 sec of each conditions. Also, the measurement results were shown with errors of 0.655±0.044 sec, 0.637±0.014 sec, and 0.662±0.013 sec, respectively.

Measurement System Development for Three-Dimensional Flow Velocity Components Using Straight-Type Five-Hole Pressure Probe (직선형 5공 압력프로브를 이용한 3차원 유동속도 계측시스템 개발)

  • Kim, J.K.;Jeong, K.J.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.56-64
    • /
    • 2006
  • This paper shows the development process of a straight-type five-hole pressure probe for measuring three-dimensional flow velocity components. The data reduction method using a bi-cubic curve-fitting program in a new calibration map was introduced in this study. This new calibration map can be applied up to the application angle, ${\pm}55^{\circ}$ of a probe. As a result, for the application angle of ${\pm}45^{\circ}$, an error for yaw and pitch angles appeared from $-1.76^{\circ}\;to\;1.83^{\circ}$ and from $-1.91^{\circ}\;to\;1.75^{\circ}$, respectively. Moreover, an error for a vector magnitude and a static pressure compared with a dynamic one showed from -7.83% to 4.87% and from -0.73 to 0.77, respectively. Even though this data reduction method showed unsatisfactory errors in a vector magnitude, it resulted in an easy and simple application method. Especially, when it was applied to an actual flow field including a swirling flow, a good result came out on the whole. However, in order to obtain a better result, it is thought that a more sophisticated interpolation method needs to be introduced.

  • PDF

Analysis of the response of a distance relay considering the errors of CT and CCVT (CT와 CCVT의 오차를 고려한 거리 계전기의 응동 분석)

  • Kang, Yong-Cheol;Zhang, Tai-Ying;Choi, Jae-Sun;Kang, Hae-Gweon;Kim, Kwang-Moo;Jang, Sung-Il;Kim, Yong-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.12-15
    • /
    • 2008
  • A distance relay has been widely used for transmission line protection. The distance relay detects a fault based on the calculated impedance i.e. the ratio of the voltage to the current measured from a current transformer (CT) and a coupling capacitor voltage transformer (CCVT), respectively. When a fault occurs and a CT saturates due to the magnitude of fault current, dc component, primary time constant, and the remanent flux of the iron core, the secondary current of a CT is distorted On the other hand, non-fundamental components generated during a fault can increase the error of a CCVT, particularly when a fault distance is short. The distortion of the current and voltage can cause mal-operation or the operating time delay of a distance relay. This paper describes the response of a distance relay considering the errors of a CT and a CCVT. The results indicate that the severe distortion of a CT and a CCVT have noticeable effect to a distance relay.

  • PDF

Behaviour Analysis of Irrigation Reservoir Using Open Water Management Program (개방형 물관리 프로그램을 이용한 관개용 저수지의 거동 분석)

  • Kim, Sun-Joo;Kim, Phil-Shik;Lim, Chang-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.1
    • /
    • pp.3-13
    • /
    • 2004
  • For optimal irrigation reservoir operation during flood and normal period, a general and systematic policy is suggested to make balance of the conflicting purposes between water conservation and flood control. We developed Open Water Management Program (OWMP) with an open architecture to deal with newly arising upgrade problems for optimal management of irrigation reservoir. And we evaluated the applicability of OWMP to estimate daily runoff from an agricultural watershed including irrigation reservoirs, and analyzed behaviour of irrigation reservoirs as irrigation water requirements considering frequency analysis of reservoir storage and frequency analysis water requirements for effective management of reservoir. When we executed OWMP with data produced from an experimental field, IHP basins, the mean relative errors of application of daily runoff and irrigation water requirement were less than 5%. We also applied OWMP to a Seongju irrigation reservoir to simulate daily runoff, storage and water requirement from 1998 to 2002, and the mean model efficiency between measured and simulated value was 0.76. Our results based on the magnitude of relative errors and model efficiency of the model simulation indicate that the OWMP can be a tool nicely adapted to the effective water management of irrigation reservoir for beneficial water use and flood disaster management.

Measurement of the Dynamic Transmission Error of Helical Gears by the Accelerometers (가속도계에 의한 헬리컬 기어의 동적 전달오차의 측정)

  • Kim, Dae-Sik;Cho, Do-Hyun;Park, Chan-Il;Choi, Deo-Kki;Park, Chan-Gook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1720-1727
    • /
    • 2003
  • The object of this work is to develop the measurement method of the transmission error of the helical gears. For this purpose, experimental set up is designed by 3D CAD software. It consists of the motor, inverter, powdered brake equipment, torque sensor and helical gearbox. In this study, tangential linear accelerometers were used as the methods for the transmission error measurement. the acceleration signals are transmitted to the signal conditioners through the slip rings and the transmission errors are obtained by a specially designed circuit board. The transmission errors are analyzed in the frequency domain. As a result, The periodicity of the transmission error is confirmed in the mesh frequency and its harmonics. The magnitude of harmonic components is very dependent on the natural frequencies of the gear system. It usually increases with the rotational speed. However, it does not always increase with torque.

A Study on the Quality Control of UIS DB (UIS 데이터베이스 품질관리에 관한 연구)

  • Kim, Kye-Hyun;Kim, Tae-Hwa;Lee, Woo-Chul
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.8 no.2 s.16
    • /
    • pp.79-88
    • /
    • 2000
  • It is essential to build a high quality database in developing a UIS to enhance the administrative effectiveness of municipal governments. To secure such a high quality DB, a proper methodology of quality control should be established. It is imperative to have such a method fit UIS DB considering that the conventional method has mainly been focusing on the quality control of the digital layers itself. Therefore, this study have analyzed the city of Inchon's UIS DB to devise a proper method to categorize the types of errors and to identify major relevant items. Also, the magnitude and frequency of each error along with its major cause have been analyzed to propose a quality control procedure to minimize the errors

  • PDF

Hydrological Review on the Fload Runoff ratio (홍수유출율에 관한 수문학적 고찰)

  • 이순혁;음성진;박명근
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.27 no.4
    • /
    • pp.42-52
    • /
    • 1985
  • This study was attempted to derivate empirical formulas for the runoff: ratio during ilood. season at three watersheds of Dan Yang, Chung Ju, and Yeo Ju are located at upper, middle, and lower portion of Nam Han river basin, respectively. Obtained formulas for flood runoff ratio can be applied as an element for the estimation, peak discharge for the design of various hydraulics structures which can be concidented with meteorological and topographical condition. The obtained through this study were analyzed as follows. 1.It was found that the magnitude of runoff ratio depends on the amount of rainfall for all studying basins. 2.Empirical formulas 'for the runoff' ratio were derivated as 1- 2,707 Rt0.345, 1-1.691 Rt0.242 and 1-1.807 Rt0.227 at Dan Yang, Chung Ju and Yeo Ju watershed, respectively. 3.The magnitude of runoff ratio was appeared in the order of Dan Yang, Chung Ju, and Yeo Ju are located at upper, middle and lower portion of Nam Han rivet basin, respectively. 4.It was assumed that in general the more it rains, the lesser becomes the ratio of loss rainfall. Especially, the ratio of loss rainfall for Dan Yang, upper portion of river basin was shown as the lowest among three watersheds. Besides, the magnitude of that was appeared in the order of Chung Ju and Yeo Ju watershed located at middle, and lower part of river basin, respectively. 5.Relative and standard errors of runoff ratio calculated by empirical formulas were shown to be within ten percent to the observed runoff ratio in all watersheds. 6.It is urgently essential that the effect of antecedent rainfall have an influence on the next coming flood should be studied in near future.

  • PDF

Validation of Significant Wave Height from Satellite Altimeter in the Seas around Korea and Error Characteristics

  • Park, Kyung-Ae;Woo, Hye-Jin;Lee, Eun-Young;Hong, Sungwook;Kim, Kum-Lan
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.6
    • /
    • pp.631-644
    • /
    • 2013
  • Significant Wave Height (SWH) data measured by satellite altimeters (Topex/Poseidon, Jason-1, Envisat, and Jason-2) were validated in the seas around Korea by comparison with wave height measurements from marine meteorological buoy stations of Korea Meteorological Administration (KMA). A total of 1,070 collocation matchups between Ku-band satellite altimeter data and buoy data were obtained for the periods of the four satellites from 1992 to the present. In the case of C-band and S-band observations, 1,086 matchups were obtained and used to assess the accuracy of satellite SWH. Root-Mean-Square (RMS) errors of satellite SWH measured with Ku-band were evaluated to roughly 0.2_2.1 m. Comparisons of the RMS errors and bias errors between different frequency bands revealed that SWH observed with Ku-band was much more accurate than other frequencies, such as C-band or S-band. The differences between satellite SWH and buoy wave height, satellite minus buoy, revealed some dependence on the magnitude of the wave height. Satellite SWH tended to be overestimated at a range of low wave height of less than 1 m, and underestimated for high wave height of greater than 2 m. Such regional characteristics imply that satellite SWH should be carefully used when employed for diverse purposes such as validating wave model results or data assimilation procedures. Thus, this study confirmed that satellite SWH products should be continuously validated for regional applications.

Effects on Performance of Deployable Solid Antenna for Panel Misalignment (패널오차에 의한 전개형 솔리드 안테나 성능 영향)

  • Lee, Ji-Yong;Lee, Kyo-Il;Yoon, Seong-Sik;Lee, Taek-Kyung;Lee, Jae-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.8
    • /
    • pp.603-609
    • /
    • 2017
  • In the deployable solid surface antennas, the effects on the performances of antenna due to the structural errors that occur during the deployment are analyzed. The deployable solid surface antennas employed in a satellite are launched in folded configuration and those are deployed in the space environment, and the effects on the antenna performance are calculated depending on the type of surface errors. When the deviation error occurs in one panel, the degradation of performance appears in the side where the incomplete deployment of panel occurs. By assuming that the panel error distribution is in cosine function, the effect of errors are calculated and analyzed with regard to the types and the magnitude of the error. If the antena panel error is uniform, the gain is reduced and pattern is symmetric. For the panel error of cosine 1 or 3 cycle, the main lobe tilts while the pattern is symmetric and the gain reduces for 2 or 4 cycle error.