• Title/Summary/Keyword: magnitude of errors

Search Result 182, Processing Time 0.026 seconds

Measurement of Screening Effect by Metal Pipe on Induced Voltage to Communication Cable from Electric Railway (전기철도에서의 통신선 유도전압에 대한 금속관 차폐효과 측정)

  • Seol, Il-Hwan;Choi, Kyu-Hyoung;Lee, Sang-Mu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2355-2362
    • /
    • 2014
  • Electric railway induces interference voltage on wayside communication cable which brings about communication errors, malfunction of devices, and safety problem. The magnitude of the induced voltage depends on the electromagnetic field coupling which is affected by metallic installations such as rail and track structures. This paper provides an experimental analysis of the screening effect of metallic pipe on the inductive voltage caused on communication cable. The measurements at a high-speed rail site show that the screening effect of metallic pipe is about 20% when the separation distance between the pipe and communication cable is 1~2 m. The screening effects is less than 1% and can be neglected when the separation distance is more than 4 m. These results are useful to evaluate the screening effects of the metallic installations such as water pipe, gas pipe, and reinforcing bar.

Micro-Machined Capacitive Linear Encoder with a Mechanical Guide (마이크로 머시닝으로 제작한 기계적 가이드를 갖는 정전용량 선형 인코더)

  • Kang, Daesil;Moon, Wonkyu
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.440-445
    • /
    • 2012
  • Contact-type Linear Encoder-like Capacitive Displacement Sensor (CLECDiS) is a novel displacement sensor which has wide measurable range with high resolution. The sensor, however, is very sensitive to relative rotational alignment between stator and mover of the sensor as well as its displacement. In addition to, there can be some disturbances in the relative rotational alignment, so some noises occur in the sensor's output signal by the disturbances. This negative effect of the high sensitivity may become larger as increasing sensitivity. Therefore, this negative effect of the high sensitivity has to be compensated and reduced to achieve nanometer resolution of the sensor. In this study, a new type capacitive linear encoder with a mechanical guide is presented to reduce the relative rotational alignment problem. The presented method is not only to reduce the alignment problem, but also to assemble the sensor to the stage conveniently. The method is based on a new type CLECDiS that has mechanical guide autonomously. In the presented sensor, when the device is fabricated by micro-machining, the guide-rail is also fabricated on the surface of the sensor. By the direct fabrication of the guide-rail with high precision micro-machining, errors of the guide-rail can be reduced significantly. In addition, a manual yaw alignment is not required to obtain large magnitude of the output signal after the assembly of the sensor and the stage. The sensor movement is going to follow the guide-rail automatically. The prototype sensor was fabricated using the presented method, and we verify the feasibility experimentally.

IDENTIFICATION OF LUMINOUS WHITE DWARF CANDIDATES IN THE GLOBULAR CLUSTERS M13 AND M22 USING HST ACS PHOTOMETRIC DATA

  • CHO, DONG-HWAN;YOON, TAE SEOG;LEE, SANG-GAK;SUNG, HYUN-IL
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.265-266
    • /
    • 2015
  • A search for luminous white dwarfs (WDs) in several nearby Galactic globular clusters (GCs) was carried out using the deep and homogeneous photometric catalog of Galactic GCs taken with the ACS/WFC aboard the Hubble Space Telescope (HST) by Sarajedini et al. and Anderson et al- It resulted in the identification of luminous WD candidates in the GCs M13 (NGC 6205) and M22 (NGC 6656). The purpose of the present study is to identify luminous WDs in the deep and homogeneous V versus V - I color-magnitude diagrams (CMDs) of several nearby Galactic GCs taken with the ACS/WFC aboard the HST. Using photometric data for the GCs M13 and M22 that are now in the public domain, the V versus V - I CMDs of the GCs M13 and M22 were constructed. Many spurious detections in the CMDs were removed using the photometric quality parameters qfit(V) and qfit(I), and a radial restriction was applied to the CMDs to remove the central stars with higher photometric errors due to central crowding. From each resultant V versus V - I CMD of the GCs M13 and M22, a dozen or so luminous WD candidates were identified. They were confirmed as stellar objects in the accompanying ACS/WFC images and their positions in the CMDs were in the bright part of the DA WD cooling curve. Therefore, the luminous WD candidates in the GCs M13 and M22 seem to be true luminous WDs, and spectroscopic observations are needed to confirm their true identity.

A Study on Cable Tension Estimation Using Smartphone Built-in Accelerometer and Camera (스마트폰 내장 가속도계와 카메라를 이용한 케이블 장력 추정에 관한 연구)

  • Lee, Hyeong-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.773-782
    • /
    • 2022
  • Estimation of cable tension through proper measurements is one of the essential tasks in evaluating the safety of cable structures. In this paper, a study on cable tension estimation using the built-in accelerometer and camera in a smartphone was conducted. For the experimental study, visual displacement measurement using a smartphone camera and acceleration measurement using a built-in accelerometer were performed in the cable-stayed bridge model. The estimated natural frequencies and transformed tensions from these measurements were compared with the theoretical values and results from the normal visual displacement method. Through comparison, it can be seen that the error between the method using the smartphone and the normal visual displacement is sufficiently small to be acceptable. It has also been shown that those errors are much smaller than the difference between the values calculated by the theoretical model. These results show that the deviation according to the type of measurement method is not large and it is rather important to use an appropriate mathematical model. In conclusion, in the case of cable tension estimation, it can be said that the visual displacement measurement and acceleration using a smartphone can be a sufficiently applicable method, just like the normal visual displacement method. It is also noteworthy that the smartphone accelerometer has a larger magnitude error and has more limitations such as high-frequency sampling instability compared to the visual displacement method, but shows almost the same performance as the visual displacement method in this cable tension estimation.

Attitude determination of cubesat during eclipse considering the satellite dynamics and torque disturbance (인공위성의 동역학과 토크 외란을 고려한 큐브위성의 식 기간 자세추정)

  • Choi, Sung Hyuk;Kang, Chul Woo;Park, Chan Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.298-307
    • /
    • 2016
  • Attitude determination of satellite is categorized by deterministic and recursive method. The recursive algorithm using Kalman filter is widely used. Cubesat has limitation for payload to minimize then only two attitude sensors are installed which are sun sensor and magnetometer. Sun sensor measurements are useless during eclipse, however cubesat keeps estimating attitude to complete the successful mission. In this paper, Attitude determination algorithm based on Kalman filter is developed by additional term which considering the dynamics for SNUSAT-1 with disturbance torque. Verification of attitude accuracy of the algorithm is conducted during eclipse. Attitude determination algorithm is simulated to compare the performance between typical method and proposed algorithm. In addition, Attitude errors are analysed with various magnitude of disturbance torque caused by space environment.

Two-Failure Gps Raim by Parity Space Approach (패러티 공간을 이용한 2개 GPS 파라미터 고장진단)

  • Yoo, Chang-Sun;Ahn, Iee-Ki;Lee,Sang-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.52-60
    • /
    • 2003
  • In aviation navigation using GPS, requirements on availability and integrity must be absolutely satisfied. Current study on accomplishing this integrity includes RAIM(Receiver Autonomous Integrity Monitoring), monitoring integrity internaIly in GPS receiver itself. Parity space technique as one of RAIM techniques has shown the advantages in fault detection and isolation due to each use of its magnitude and direction under the assumption of one fault. ln case of multiple fault, as biases in errors interact decreasing the effect of multiple fault in parity space, the exact fault detection and identification(FDI) may be difficult to be conducted. This paper focuses on FDI study on two faults and explains why parity space techniques applied on single fault is not adequate to the application of multiple fault case and shows that extended parity space technique may improve the performance of RAIM on two faults.

Positional uncertainties of cervical and upper thoracic spine in stereotactic body radiotherapy with thermoplastic mask immobilization

  • Jeon, Seung Hyuck;Kim, Jin Ho
    • Radiation Oncology Journal
    • /
    • v.36 no.2
    • /
    • pp.122-128
    • /
    • 2018
  • Purpose: To investigate positional uncertainty and its correlation with clinical parameters in spine stereotactic body radiotherapy (SBRT) using thermoplastic mask (TM) immobilization. Materials and Methods: A total of 21 patients who underwent spine SBRT for cervical or upper thoracic spinal lesions were retrospectively analyzed. All patients were treated with image guidance using cone beam computed tomography (CBCT) and 4 degrees-of-freedom (DoF) positional correction. Initial, pre-treatment, and post-treatment CBCTs were analyzed. Setup error (SE), pre-treatment residual error (preRE), post-treatment residual error (postRE), intrafraction motion before treatment (IM1), and intrafraction motion during treatment (IM2) were determined from 6 DoF manual rigid registration. Results: The three-dimensional (3D) magnitudes of translational uncertainties (mean ${\pm}$ 2 standard deviation) were $3.7{\pm}3.5mm$ (SE), $0.9{\pm}0.9mm$ (preRE), $1.2{\pm}1.5mm$ (postRE), $1.4{\pm}2.4mm$ (IM1), and $0.9{\pm}1.0mm$ (IM2), and average angular differences were $1.1^{\circ}{\pm}1.2^{\circ}$ (SE), $0.9^{\circ}{\pm}1.1^{\circ}$ (preRE), $0.9^{\circ}{\pm}1.1^{\circ}$ (postRE), $0.6^{\circ}{\pm}0.9^{\circ}$ (IM1), and $0.5^{\circ}{\pm}0.5^{\circ}$ (IM2). The 3D magnitude of SE, preRE, postRE, IM1, and IM2 exceeded 2 mm in 18, 0, 3, 3, and 1 patients, respectively. No association were found between all positional uncertainties and body mass index, pain score, and treatment location (p > 0.05, Mann-Whitney test). There was a tendency of intrafraction motion to increase with overall treatment time; however, the correlation was not statistically significant (p > 0.05, Spearman rank correlation test). Conclusion: In spine SBRT using TM immobilization, CBCT and 4 DoF alignment correction, a minimum residual translational uncertainty was 2 mm. Shortening overall treatment time and 6 DoF positional correction may further reduce positional uncertainties.

Design of 2V CMOS Continuous-Time Filter Using Current Integrator (전류 적분기를 이용한 2V CMOS 연속시간 필터 설계)

  • 안정철;유영규;최석우;윤창헌;김동용
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.9
    • /
    • pp.64-72
    • /
    • 1998
  • In this paper, the design of a current integrator for low-voltage, low-power, and high frequency applications using complementary high swing cascode current-mirror is presented. The proposed integrator decreases output current errors due to non-zero input resistance and non-infinite output resistance of the simple current integrator. As a design example, the 3rd order Butterworth lowpass filter is designed by a leapfrog method. Also, we apply the predistortion design method to reduce the magnitude distortion which occurs at a cutoff frequency by the undesirable phase shift of a lossless current integrator. The designed current-mode filter is simulated and examined by SPICE using 0.8$\mu\textrm{m}$ CMOS n-well process parameters. The simulation results show 20MHz cutoff frequency and 615㎼ power dissipation with a 2V power supply. And the cutoff frequency of the filters can be easily changed by the DC bias current.

  • PDF

Physical Properties and Optical Symmetry of Some Bireflecting Ore Mineral Species (이방성(異方性) 자원광물(資源鑛物)의 물성(物性) 및 광학적(光學的) 대칭성(對稱性) 연구(硏究))

  • So, Chil-Sup;Doh, Seong-Jae;Lee, Kyeong-Yong
    • Economic and Environmental Geology
    • /
    • v.18 no.4
    • /
    • pp.343-355
    • /
    • 1985
  • Spectral reflectivity and microhardness were measured quantitatively on polished surfaces of a selection of bireflecting minerals obtained from several well known metallic deposits. Incremental errors are much higher than decremental errors and errors were found to be lowest in the spectral region close to the green wavelength ($544m{\mu}$). The characteristics of the spectral profile are significant in their control of white light color. The covellite and graphite have reflectivity profiles similar in shape for each principal direction, showing noticeable difference in magnitude between the profiles: The spectral reflectivity of covellite parallel to the extraordinary vibration is higher (R$$\simeq_-$$10%) than that parallel to the ordinary vibration and graphite shows opposite feature. Reflectivity of the enargite and famatinite cut parallel to the cleavage plane is always higher (R$$\simeq_-$$5%) than that of the section cut normal. The optical symmetry of 5 bireflecting minerals was determined by noting the variation in reflectivity at $544m{\mu}$. The data indicate that covellite is optically uniaxial positive and graphite is optically uniaxial negative. The Rm values for enargite and famatinite are clearly closer to the minimum value for the mineral ($R_1$) than to the maximum value ($R_2$) : the minerals can be recognized as optically biaxial positive. Enargite and famatinite cut parallel to cleavage have much higher hardness values (HV=> $200kg/mm^2$) than those cut normal to cleavage. Vickers indentations exhibit characteristic features for all the bireflecting mineral species studied. Broad radicle groupings of the mineral species can be made with regard to the reflectivity microhardness numbers.

  • PDF

New Methods for Correcting the Atmospheric Effects in Landsat Imagery over Turbid (Case-2) Waters

  • Ahn Yu-Hwan;Shanmugam P.
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.5
    • /
    • pp.289-305
    • /
    • 2004
  • Atmospheric correction of Landsat Visible and Near Infrared imagery (VIS/NIR) over aquatic environment is more demanding than over land because the signal from the water column is small and it carries immense information about biogeochemical variables in the ocean. This paper introduces two methods, a modified dark-pixel substraction technique (path--extraction) and our spectral shape matching method (SSMM), for the correction of the atmospheric effects in the Landsat VIS/NIR imagery in relation to the retrieval of meaningful information about the ocean color, especially from Case-2 waters (Morel and Prieur, 1977) around Korean peninsula. The results of these methods are compared with the classical atmospheric correction approaches based on the 6S radiative transfer model and standard SeaWiFS atmospheric algorithm. The atmospheric correction scheme using 6S radiative transfer code assumes a standard atmosphere with constant aerosol loading and a uniform, Lambertian surface, while the path-extraction assumes that the total radiance (L/sub TOA/) of a pixel of the black ocean (referred by Antoine and Morel, 1999) in a given image is considered as the path signal, which remains constant over, at least, the sub scene of Landsat VIS/NIR imagery. The assumption of SSMM is nearly similar, but it extracts the path signal from the L/sub TOA/ by matching-up the in-situ data of water-leaving radiance, for typical clear and turbid waters, and extrapolate it to be the spatially homogeneous contribution of the scattered signal after complex interaction of light with atmospheric aerosols and Raleigh particles, and direct reflection of light on the sea surface. The overall shape and magnitude of radiance or reflectance spectra of the atmospherically corrected Landsat VIS/NIR imagery by SSMM appears to have good agreement with the in-situ spectra collected for clear and turbid waters, while path-extraction over turbid waters though often reproduces in-situ spectra, but yields significant errors for clear waters due to the invalid assumption of zero water-leaving radiance for the black ocean pixels. Because of the standard atmosphere with constant aerosols and models adopted in 6S radiative transfer code, a large error is possible between the retrieved and in-situ spectra. The efficiency of spectral shape matching has also been explored, using SeaWiFS imagery for turbid waters and compared with that of the standard SeaWiFS atmospheric correction algorithm, which falls in highly turbid waters, due to the assumption that values of water-leaving radiance in the two NIR bands are negligible to enable retrieval of aerosol reflectance in the correction of ocean color imagery. Validation suggests that accurate the retrieval of water-leaving radiance is not feasible with the invalid assumption of the classical algorithms, but is feasible with SSMM.