• 제목/요약/키워드: magnitude of cyclic loading

검색결과 45건 처리시간 0.029초

Simulated tropical cyclonic winds for low cycle fatigue loading of steel roofing

  • Henderson, David J.;Ginger, John D.;Morrison, Murray J.;Kopp, Gregory A.
    • Wind and Structures
    • /
    • 제12권4호
    • /
    • pp.383-400
    • /
    • 2009
  • Low rise building roofs can be subjected to large fluctuating pressures during a tropical cyclone resulting in fatigue failure of cladding. Following the damage to housing in Tropical Cyclone Tracy in Darwin, Australia, the Darwin Area Building Manual (DABM) cyclic loading test criteria, that loaded the cladding for 10000 cycles oscillating from zero to a permissible stress design pressure, and the Experimental Building Station TR440 test of 10200 load cycles which increased in steps to the permissible stress design pressure, were developed for assessing building elements susceptible to low cycle fatigue failure. Recently the 'Low-High-Low' (L-H-L) cyclic test for metal roofing was introduced into the Building Code of Australia (2007). Following advances in wind tunnel data acquisition and full-scale wind loading simulators, this paper presents a comparison of wind-induced cladding damage, from a "design" cyclone proposed by Jancauskas, et al. (1994), with current test criteria developed by Mahendran (1995). Wind tunnel data were used to generate the external and net pressure time histories on the roof of a low-rise building during the passage of the "design" cyclone. The peak pressures generated at the windward roof corner for a tributary area representative of a cladding fastener are underestimated by the Australian/New Zealand Wind Actions Standard. The "design" cyclone, with increasing and decreasing wind speeds combined with changes in wind direction, generated increasing then decreasing pressures in a manner similar to that specified in the L-H-L test. However, the L-H-L test underestimated the magnitude and number of large load cycles, but overestimated the number of cycles in the mid ranges. Cladding elements subjected to the L-H-L test showed greater fatigue damage than when experiencing a five hour "design" cyclone containing higher peak pressures. It is evident that the increased fatigue damage was due to the L-H-L test having a large number of load cycles cycling from zero load (R=0) in contrast to that produced during the cyclone.

Investigation of major parameters affecting instablility of steel beams with RBS moment connections

  • Tabar, A.Moslehi;Deylami, A.
    • Steel and Composite Structures
    • /
    • 제6권3호
    • /
    • pp.203-219
    • /
    • 2006
  • One of the most promising ways through which a steel moment frame may attain high energy dissipating capability is to trim off a portion of the beam flanges near the column face. This type of moment connection, known as Reduced Beam Section (RBS) connection, has notable superiority in comparison with other moment connection types. As the result of the advantages of RBS moment connection, it has widely being used in practice. In spite of the good hysteretic behaviour, an RBS beam suffers from an undesirable drawback, which is local and lateral instability of the beam. The instability in the RBS beam reduces beam load-carrying capacity. This paper aims to investigate key issues influencing cyclic behaviour of RBS beams. To this end, a numerical analysis was conducted on a series of steel subassemblies with various geometric properties. The obtained results together with the existing experimental data are used to study the instability of RBS beams. A new slenderness concept is presented to control an RBS beam for combined local and lateral instability. This concept is in good agreement with the numerical and experimental results. Finally, a model is developed for the prediction of the magnitude of moment degradation owing to the instability of an RBS beam.

Effect of geometrical configuration on seismic behavior of GFRP-RC beam-column joints

  • Ghomia, Shervin K.;El-Salakawy, Ehab
    • Advances in concrete construction
    • /
    • 제9권3호
    • /
    • pp.313-326
    • /
    • 2020
  • Glass fiber-reinforced polymer (GFRP) bars have been introduced as an effective alternative for the conventional steel reinforcement in concrete structures to mitigate the costly consequences of steel corrosion. However, despite the superior performance of these composite materials in terms of corrosion, the effect of replacing steel reinforcement with GFRP on the seismic performance of concrete structures is not fully covered yet. To address some of the key parameters in the seismic behavior of GFRP-reinforced concrete (RC) structures, two full-scale beam-column joints reinforced with GFRP bars and stirrups were constructed and tested under two phases of loading, each simulating a severe ground motion. The objective was to investigate the effect of damage due to earthquakes on the service and ultimate behavior of GFRP-RC moment-resisting frames. The main parameters under investigation were geometrical configuration (interior or exterior beam-column joint) and joint shear stress. The performance of the specimens was measured in terms of lateral load-drift response, energy dissipation, mode of failure and stress distribution. Moreover, the effect of concrete damage due to earthquake loading on the performance of beam-column joints under service loading was investigated and a modified damage index was proposed to quantify the magnitude of damage in GFRP-RC beam-column joints under dynamic loading. Test results indicated that the geometrical configuration significantly affects the level of concrete damage and energy dissipation. Moreover, the level of residual damage in GFRP-RC beam-column joints after undergoing lateral displacements was related to reinforcement ratio of the main beams.

Health monitoring of a new hysteretic damper subjected to earthquakes on a shaking table

  • Romo, L.;Benavent-Climent, A.;Morillas, L.;Escolano, D.;Gallego, A.
    • Earthquakes and Structures
    • /
    • 제8권3호
    • /
    • pp.485-509
    • /
    • 2015
  • This paper presents the experimental results obtained by applying frequency-domain structural health monitoring techniques to assess the damage suffered on a special type of damper called Web Plastifying Damper (WPD). The WPD is a hysteretic type energy dissipator recently developed for the passive control of structures subjected to earthquakes. It consists of several I-section steel segments connected in parallel. The energy is dissipated through plastic deformations of the web of the I-sections, which constitute the dissipative parts of the damper. WPDs were subjected to successive histories of dynamically-imposed cyclic deformations of increasing magnitude with the shaking table of the University of Granada. To assess the damage to the web of the I-section steel segments after each history of loading, a new damage index called Area Index of Damage (AID) was obtained from simple vibration tests. The vibration signals were acquired by means of piezoelectric sensors attached on the I-sections, and non-parametric statistical methods were applied to calculate AID in terms of changes in frequency response functions. The damage index AID was correlated with another energy-based damage index -ID- which past research has proven to accurately characterize the level of mechanical damage. The ID is rooted in the decomposition of the load-displacement curve experienced by the damper into the so-called skeleton and Bauschinger parts. ID predicts the level of damage and the proximity to failure of the damper accurately, but it requires costly instrumentation. The experiments reported in this paper demonstrate a good correlation between AID and ID in a realistic seismic loading scenario consisting of dynamically applied arbitrary cyclic loads. Based on this correlation, it is possible to estimate ID indirectly from the AID, which calls for much simpler and less expensive instrumentation.

Mid-length lateral deflection of cyclically-loaded braces

  • Sheehan, Therese;Chan, Tak-Ming;Lam, Dennis
    • Steel and Composite Structures
    • /
    • 제18권6호
    • /
    • pp.1569-1582
    • /
    • 2015
  • This study explores the lateral deflections of diagonal braces in concentrically-braced earthquake-resisting frames. The performance of this widely-used system is often compromised by the flexural buckling of slender braces in compression. In addition to reducing the compressive resistance, buckling may also cause these members to undergo sizeable lateral deflections which could damage surrounding structural components. Different approaches have been used in the past to predict the mid-length lateral deflections of cyclically loaded steel braces based on their theoretical deformed geometry or by using experimental data. Expressions have been proposed relating the mid-length lateral deflection to the axial displacement ductility of the member. Recent experiments were conducted on hollow and concrete-filled circular hollow section (CHS) braces of different lengths under cyclic loading. Very slender, concrete-filled tubular braces exhibited a highly ductile response, undergoing large axial displacements prior to failure. The presence of concrete infill did not influence the magnitude of lateral deflection in relation to the axial displacement, but did increase the number of cycles endured and the maximum axial displacement achieved. The corresponding lateral deflections exceeded the deflections observed in the majority of the previous experiments that were considered. Consequently, predictive expressions from previous research did not accurately predict the mid-height lateral deflections of these CHS members. Mid-length lateral deflections were found to be influenced by the member non-dimensional slenderness (${\bar{\lambda}}$) and hence a new expression was proposed for the lateral deflection in terms of member slenderness and axial displacement ductility.

유사정적실험에 의한 지진이력 철근콘크리트 교각의 내진 연성도 평가 (Seismic Ductility Assessment of RC Bridge Piers With Minor Earthquake Damage By the Quasi Static Test)

  • 이은희;정영수;박창규;김영섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.505-511
    • /
    • 2003
  • Experimental investigation was conducted into the flexure/shear-critical behavior of earthquake-damaged reinforced concrete columns with lap splicing of longitudinal reinforcement in the plastic hinge region. Six test specimens in the aspect ratio of 2,5 were made with test parameters: confinement ratios, lap splices, and retrofitting FRP materials. They were damaged under series of artificial earthquakes of which magnitude could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading simultaneously under a constant axial load, P=$0.1f_{ck}A_g. Residual seismic performance of damaged columns was evaluated and compared to that of the corresponding original columns. Test results show that RC bridge piers with lap-spliced longitudinal steels in the plastic hinge region appeared to fail at low ductility. This was due to the debonding of the lap splice, which resulted from insufficient development of the longitudinal steels. The specimens externally wrapped with composite FRP straps in the potential plastic hinge region indicated significant improvement both in flexural strength and displacement ductility, and strain energy ductility.

  • PDF

접촉피로에 의한 표면피팅의 유한요소 시뮬레이션 (Finite Element Simulation of Surface Pitting due to Contact Fatigue)

  • 이환우;김성훈
    • 한국정밀공학회지
    • /
    • 제27권3호
    • /
    • pp.80-88
    • /
    • 2010
  • A simple computational model for modeling of subsurface crack growth under cyclic contact loading is presented. In this model, it is assumed that the initial fatigue crack will initiate in the region of the maximum equivalent stress at certain depth under the contacting surface. The position and magnitude of the maximum equivalent stress are determined by using the equivalent contact model, which is based on the Hertzian contact conditions with frictional forces. The virtual crack extension method is used for simulation of the fatigue crack growth from the initial crack up to the formation of the surface pit due to contact fatigue. The relationships between the stress intensity factor and crack length are then determined for various combinations of equivalent contact radii and loadings.

Study of an innovative two-stage control system: Chevron knee bracing & shear panel in series connection

  • Vosooq, Amir Koorosh;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • 제47권6호
    • /
    • pp.881-898
    • /
    • 2013
  • This paper describes analytical investigation into a new dual function system including a couple of shear links which are connected in series using chevron bracing capable to correlate its performance with magnitude of earthquakes. In this proposed system, called Chevron Knee-Vertical Link Beam braced system (CK-VLB), the inherent hysteretic damping of vertical link beam placed above chevron bracing is exclusively utilized to dissipate the energy of moderate earthquakes through web plastic shear distortion while the rest of the structural elements are in elastic range. Under strong earthquakes, plastic deformation of VLB will be halted via restraining it by Stopper Device (SD) and further imposed displacement subsequently causes yielding of the knee elements located at the bottom of chevron bracing to significantly increase the energy dissipation capacity level. In this paper first by studying the knee yielding mode, a suitable shape and angle for diagonal-knee bracing is proposed. Then finite elements models are developed. Monotonic and cyclic analyses have been conducted to compare dissipation capacities on three individual models of passive systems (CK-VLB, knee braced system and SPS system) by General-purpose finite element program ABAQUS in which a bilinear kinematic hardening model is incorporated to trace the material nonlinearity. Also quasi-static cyclic loading based on the guidelines presented in ATC-24 has been imposed to different models of CK-VLB with changing of vertical link beam section in order to find prime effectiveness on structural frames. Results show that CK-VLB system exhibits stable behavior and is capable of dissipating a significant amount of energy in two separate levels of lateral forces due to different probable earthquakes.

국내 지진규모를 고려한 중진 지역에서의 액상화 평가방법에 관한 연구 (A Study on Liquefaction Assessment of Moderate Earthquake Region concerning Earthquake Magnitude of Korea)

  • 김수일;박근보;박성용;서경범
    • 한국지진공학회논문집
    • /
    • 제10권3호
    • /
    • pp.125-134
    • /
    • 2006
  • 기존의 액상화 평가방법은 대부분 미국, 일본 등 지진 발생빈도가 높고 그로 인한 액상화 피해가 빈번한 국가에서 주도적으로 연구가 진행되었으며, 개발된 액상화 평가방법들은 큰 지진규모(M=7.5)에 기초하고 있다. 국내에서도 1997년 실제적인 내진연구가 시작된 이래 액상화 평가의 구체적 규정이 제정되었으나, 내진설계기준에서는 실지진하중을 등가의 전단응력으로 간편화한 경험적인 방법과 실내진동실험에 의한 액상화 상세평가 방법을 통해 액상화 평가를 수행하도록 되어있다. 그러나 이러한 경우 실제 지진하중의 특성을 평가과정에서 반영하지 못하는 문제점이 있다. 본 연구에서는 이러한 문제점을 개선하기 위하여 실제 지진파 고유의 특성을 적용한 진동삼축실험을 통하여 상대밀도와 실트질함유량의 변화에 따른 액상화 저항강도를 산정하였다. 실험결과를 토대로 국내의 대표적인 항만지역의 지진응답해석 결과와 비교 분석하여 중진지역에 적합한 액상화 평가 생략기준을 제시하였다. 또한 액상화 평가시 정현하중 사용의 문제점을 개선하기 위하여 쐐기하중 및 선형증가쐐기하중 실험을 수행하여 하중 변화에 따른 액상화 저항강도 특성을 분석하였다.

중진지역에 적합한 액상화 평가 생략기준 및 지진규모 보정계수에 관한 연구 (A Study on Magnitude Scaling Factors and Screening Limits of Liquefaction Potential Assessment in Moderate Earthquake Regions)

  • 박근보;박영근;최재순;김수일
    • 한국지반공학회논문집
    • /
    • 제20권7호
    • /
    • pp.127-140
    • /
    • 2004
  • 기존의 액상화 평가법은 대부분 미국, 일본, 그리고 유럽과 같이 지진 발생빈도가 높고 그로 인한 액상화 피해가 빈번한 국가에서 주도적으로 연구되어왔다. 이런 지역적 특성을 토대로 개발된 액상화 평가방법들은 높은 지진규모(M=7.5)에 바탕을 두고 있다. 국내의 경우, 1997년 실제적인 내진 연구가 시작된 이래 액상화 평가의 구체적 규정은 항만시설의 내진설계 표준서(1999)에 언급된 바 있으나 이는 문헌연구를 통해 제시된 것으로 실제적이지 못하다. 그러므로, 국내 적합한 설계기준을 작성하기 위해서는 지진피해자료의 부족을 국내 지반을 대상으로 한 동적실내시험을 통하는 것이 바람직하며, 일반적인 정현하중 진동시험 보다 실제 지진하중 재하 시험이 훨씬 효과적일 수 있다. 본 연구에서는 실제 지진파 고유의 특성을 적용한 진동삼축 시험을 통하여 상대밀도와 세립분함유량의 변화에 따른 액상화 저항강도를 산정하였다. 실험결과를 국내의 대표적인 항만지역의 지진응답 해석 결과와 비교 분석하고 중진지역에 적합한 액상화 평가의 생략기준을 제시하였다. 또한 실제 지진하중 삼축실험 결과를 이용하여 국내 여건에 적합한 지진규모 보정계수를 제안하였다.