• Title/Summary/Keyword: magnetoelectric

검색결과 52건 처리시간 0.023초

$CoFe_2O_4-PZT$ 복합체의 Magnetoelectric 효과 (Magnetoelectric Effect in$CoFe_2O_4-PZT$Composites)

  • 최임구;권순주;박수현;정윤희
    • 한국자기학회지
    • /
    • 제7권6호
    • /
    • pp.285-292
    • /
    • 1997
  • Cobalt ferrite와 Pb(Zr, Ti) $O_{3}$ 복합체를 고상 반응법으로 제조하여, magnetoelectric 효과를 조사하였다. 소결 시간과 cobalt ferrite의 부피비가 증가함에 따라 magnetoelectric 전압 계수의 최대값이 증가하였다. 한편, 이 최댜값을 나타내는 자기장은 소결 시간 증가에 따라 낮은 쪽으로, cobalt ferrite 부피 증가에 따라 높은 쪽으로 이동하였다. 이러한 현상들은 각 상의 입자 크기 변화와 이에 따른 응력 전달 변화, 자화 및 분극 용이도로 설명되었다. 비화학당량 조성인 $Co_{1.02}$F $e_{1.98}$ $O_{4}$를 사용하여, 이제까지 발표된 최대 효과보다 약 30% 높은 0.174 V/cm Oe 의 magnetoelectric 전압 계수 값을 얻었다.얻었다.

  • PDF

High Magnetoelectric Properties in 0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 Single Crystal and Terfenol-D Laminate Composites

  • Ryu, Jung-Ho;Priya, Shashank;Uchino, Kenji;Kim, Hyoun-Ee;Viehland, Dwight
    • 한국세라믹학회지
    • /
    • 제39권9호
    • /
    • pp.813-817
    • /
    • 2002
  • Magnetoelectric(ME) laminate composites of $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3 (PMN-PT)$ and Terfenol-D were prepared by sandwiching single crystals of PMN-PT between Terfenol-D disks. The magnetoelectric voltage coefficient (dE/dH) of the composite was determined to be 10.30 V/cm${\cdot}$Oe, at 1 kHz and under a dc magnetic bias of 0.4 T. The value of dE/dH is ∼80 times higher than either that of naturally occurring magnetoelectrics or artificially-grown magnetoelectric composites. This superior magnetoelectric voltage coefficient is attributed to the high piezoelectric voltage constant as well as the high elastic compliance of PMN-PT single crystal and the large magnetostrictive response of Terfenol-D.

Structural Distortions and Electrical Properties of Magnetoelectric Layered Perovskites: $Bi_4Ti_3O_{}12.nBiFeO_3$(n=1&2)

  • Ko, Taegyung;Bang, Gyusuk;Shin, Jungmuk
    • The Korean Journal of Ceramics
    • /
    • 제4권2호
    • /
    • pp.83-89
    • /
    • 1998
  • The structure refinements and the electrical and magnetoelectric measurements were performed for BIT.1BF and BIT.2BT. The tetragonal distortion of the ab plane became lessened with the addition of $4BiFeO_3 into Bi_4Ti_3O_{12}$ significantly. However, the tilting of the outer-oxygen octahedra of the perovskite unit and the elongatin of the $(Bi_2O_2)^{2+}$ layers became more pronounced. For the both phases, the bariations of dielectric properties and electrical conductivities at high temperatures showed that the ferroelectic I-rerroelectric II phase transition existed before reaching the Curie temperature. The electrical conductivity became higher with the increase of $Fe^{3+}$ ions, implying that the electron transfer increased correspondingly. The magnetoelectric effect was observed linear up to ~8 kOe, which was stronger in BIT.1BF than BIT.2BF. This behavior indicates that the distortion of the ab plane may affect the induced polarization as well as magnetic moment.

  • PDF

Lanthanum이 첨가된BiFeO3−PbTiO3 세라믹스의 전자효과에 대한 연구 (A Study on the Magnetoelectric Effect in Lanthanum Modified BiFeO3−PbTiO3 Ceramics)

  • 이은구;김선재;이재갑
    • 한국세라믹학회지
    • /
    • 제44권6호
    • /
    • pp.308-312
    • /
    • 2007
  • Ferroelectric, magnetic, and magnetoelectric effects for lanthanum modified $BiFeO_3-PbTiO_3$ ceramics have been investigated. The data show that magnetoelectric polarization coefficient, ${\alpha}_p$ is due to a linear coupling between polarization and magnetization, and that ${\alpha}_p$ is independent of dc magnetic bias and ac magnetic field. The values of ${\alpha}_p$ and magnetic induced susceptibility for lanthanum modified $BiFeO_3-PbTiO_3$ ceramics are much larger than those of single $BiFeO_3$ crystal. We believe that the magnetoelectric effect is significantly enhanced by breaking of the cycloidal spin state of a long-period spiral spin structure due to randomly distributed charged imperfections.

Load Resistance Influence of Magnetoelectric Characteristics on NiZnFe2O4+PZT Composites for Magnetoelectric Sensors

  • Ryu, Ji-Goo;Chung, Su-Tae
    • 센서학회지
    • /
    • 제22권6호
    • /
    • pp.379-386
    • /
    • 2013
  • The influences of the load resistance $R_L$ on the magnetoelectric (ME) characteristics of $NiZnFe_2O_4+PZT$ composite were investigated in the non-resonance frequency range. The ME coefficient peak increases with increasing $R_L$, but the frequency indicating the ME coefficient peak decreases with increasing $R_L$. The maximum output power peak is approximately $9.3{\times}10^{-10}mW/Oe$ near $R_L=3.3M{\Omega}$ at f=280 Hz, and the ME coefficient seems to be saturated at $R_L>20M{\Omega}$. This frequency shift effect of $R_L$ shows that the frequency range for an ME sensor application can be modulated with the appropriate value of $R_L$. The ME output voltage has a good linear response to the ac field Hac and shows fair stability over a range of temperatures. The measured non-linearity of this sample is approximately 0.8%. This sample will allow for a low-strength magnetic ac-field sensor. The result from this sample will serve as basic data for a signal-processing circuit system.

자기-전기(ME) 복합체를 활용한 초미세 자기장 감지 기술 (Sensing of ultra-low magnetic field by magnetoelectric (ME) composites)

  • 황건태;송현석;장종문;류정호;윤운하
    • 세라미스트
    • /
    • 제23권1호
    • /
    • pp.38-53
    • /
    • 2020
  • Magnetoelectric (ME) composites composed of magnetostrictive and piezoelectric materials derive interfacial coupling of magnetoelectric conversion between magnetic and electric properties, thus enabling to detect ultra-low magnetic field. To improve the performance of ME composite sensors, various research teams have explored adopting highly efficient magnetostrictive and piezoelectric phases, tailoring of device geometry/structure, and developing signal process technique. As a result, latest ME composites have achieved not only outstanding ME conversion coefficient but also sensing of ultra-low magnetic field below 1pT. This article reviews the recent research trend of ME composites for sensing of ultra-low magnetic field.

자기전기 고분자 복합체 (Magnetoelectric Polymer Composites)

  • 고규진;노병일;양수철
    • 한국전기전자재료학회논문지
    • /
    • 제34권4호
    • /
    • pp.229-241
    • /
    • 2021
  • Since 2010, polymer-based magnetoelectric (ME) composites have been developed with detailed investigations of multiferroic properties such as piezoelectric, magnetostrictive, and magnetoelectric, etc. In particular, as a piezoelectric polymer, poly(vinylidene fluoride) and its co-polymers have been widely used in ME composites for energy harvesting, health monitoring, environment treatment, and bio-medical applications. In this study, main research trend and selected experimental results of polymer-based ME composites are briefly reviewed with respect to composite structure as well as application field. A conclusion was drawn that the polymer-based ME composites would be feasible as flexible devices or functional membranes in the near future.

(1-x) [0.5PZT-0.25PNN-0.25PZN]- x [Ni0.9Zn0.1Fe2O4] 세라믹스의 압전/자성 성질 및 자기전기적 효과 (Piezoelectric/magnetic Properties and Magnetoelectric Effects in (1-x) [0.5PZT-0.25PNN-0.25PZN] - x [Ni0.9Zn0.1Fe2O4] Particulate Ceramic Composites)

  • 박영권;손세모;류지구;정수태
    • 한국전기전자재료학회논문지
    • /
    • 제23권11호
    • /
    • pp.869-874
    • /
    • 2010
  • Magnetoelectric composites with compositions (1-x)[0.5PZT-0.25PNN-0.25PZN](ferroelectric) - x[$(Ni_{0.9}Zn_{0.1})Fe_2O_4$](ferrite) in which x varies as 0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0 were prepared by conventional ceramic process. The presence of two phases (ferroelectric phase with large grain and ferrite phase with small grain) in the particulate ceramic composites was confirmed by XRD, SEM and EDX. The ferroelectric and magnetic properties of the composites were studied by measuring the P-E and M-H hysterisis loop on the composite composition (x=0, 0.1, 0.2, 1), they were strongly affects of the phase content in composite. The magnetoelectric votage was measured as a function of DC magnetic field and the maximum magnetoelectric voltage coefficient of 14 mV/cm Oe was observed in x=0.2(80 mol% ferroelectric and 20 mol% ferrite phase).

(Bi,La)FeO3-PbTiO3 세라믹스의 자전효과 (Magnetoelectric Effects in (Bi,La)FeO3-PbTiO3 Ceramics)

  • 이은구;이종국;장우양;김선재;이재갑
    • 한국재료학회지
    • /
    • 제15권2호
    • /
    • pp.121-125
    • /
    • 2005
  • Magnetoelectric (ME) effects for lanthanum modified $BiFeO_3-PbTiO_3\;(BE-_xPT)$ solid solutions have been investigated. The value of magnetoelectric polarization coefficient, up is 10 times greater than that of $Cr_2O_3$. The results also show that up is due to a linear coupling between polarization and magnetization, and that up is independent of do magnetic bias and ac magnetic field. The ME effect is believed to be significantly enhanced due to breaking of the cycloidal spin state of a long-period spiral spin structure, via randomly distributed charged imperfections.