• Title/Summary/Keyword: magnetocrystalline anisotropy

Search Result 62, Processing Time 0.031 seconds

Determination Errors of Saturation Magnetization and Magnetocrystalline Anisotropy Constant from Magnetization Curves of Magnetically (일측이방성 다결정의 자화곡선을 이용한 포화자화 및 결정자기이방성상수 결정에서의 오차분석)

  • Kim, M.J.;Hur, J.;Kim, Y.B.;Kim, T.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.4
    • /
    • pp.173-176
    • /
    • 1999
  • Errors of saturation magnetization and magnetocrystalline anisotropy constant determined by magnetization curve of magnetically aligned unixial power were analyzed. In case of alignment factor ${\Theta}_0=10{\circ}$, magnetic constant errors of $Nd_2Fe_{14}B$ were calculated to be error of $M_S{\risingdotseq}1{\%}\;and\;error\;of\;K_1{\risingdotseq}13\;{\%}$, respectively, and magnetic constant errors of Ba-ferrite were calculated to be error of $M_S{\risingdotseq}1{\%}\;and\;error\;of\;K_1{\risingdotseq}17\;{\%}$. In this method, $M_s$ was found to be determined with high accuracy. High alignment is desirable for high accuracy.

  • PDF

Magnetocrystalline Anisotropy of α''-Fe16N2 (α''-Fe16N2의 자기결정이방성)

  • Khan, Imran;Son, Jicheol;Hong, Jisang
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.4
    • /
    • pp.115-118
    • /
    • 2016
  • We investigated the magnetocrystalline anisotropy of pure ${\alpha}^{{\prime}{\prime}}-Fe_{16}N_2$ by using full-potential linearized augmented plane wave method (FLAPW). A very high magnetic moment was obtained for Fe (4d) site due to the lattice expansion in the z-direction, while the magnetic moment of Fe (4e) and (8h) site were suppressed due to hybridization with neighboring N atom. The calculated spin magnetic moments for different Fe sites (4d, 4e and 8h) were in good agreement with previously reported values. Due to the tetragonal distortion, we found a very large uniaxial anisotropy constant of $0.58MJ/m^3$. Besides, a high value of magnetization of 1.76MA/m was obtained. In additon, the estimated coercive field and maximum energy product of 6.51 kOe and 71.7 MGOe were obtained for pure ${\alpha}^{{\prime}{\prime}}-Fe_{16}N_2$. This may suggest that the ${\alpha}^{{\prime}{\prime}}-Fe_{16}N_2$ can be utilized for potential rare-earth free permanent magnet material.

Magnetic Properties of Ordered L12 FePt3: A First Principles Study

  • Kim, Dong-Yoo;Hong, Ji-Sang
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.197-200
    • /
    • 2011
  • Using the full potential linearized augmented plane wave (FLAPW) method, the influences of uniform and tetragonal strains on the magnetic state have been explored for chemically ordered bulk $L1_2$ $FePt_3$. The ordered state displays antiferromagnetic $Q_1$ (AFM-$Q_1$) state but it transitions into antiferromagnetic $Q_2$ (AFM-$Q_2$) state at about 10% uniform strain. The ferromagnetic (FM) state is observed at 11% uniform strain. For tetragonal strain, it is also seen that the transition from AFM-$Q_1$ to AFM-$Q_2$ depends on the strength and direction of the applied strain. The FM state does not appear in this case. Magnetocrystalline anisotropy (MCA) calculations for tetragonal distortion reveal that the spin reorientation transition occurs. In addition, we find that the direction of magnetization and the magnitude of magnetic anisotropy energy strongly depend on the c/a ratio.

Magnetism of Amorphous Bulk $(Sm_{1-x}Pr_x)Fe_2$ Alloys in a Low Magnetic Field (저자장에서 비정질 후막$(Sm_{1-x}Pr_x)Fe_2$의 자성)

  • Kim, Jai-Young
    • Korean Journal of Materials Research
    • /
    • v.5 no.8
    • /
    • pp.913-920
    • /
    • 1995
  • RFe$_2$(R=rare earth) Laves Phase intermetallic compounds are one of the promising materials for magnetostrictive applications, due to large magnetostriction coefficients in the order of 10$^{-3}$ . However, because RFe$_2$intermetallic compounds have large magnetostriction constants as well as large magnetocrystalline anisotropy constants, a large external magnetic field is necessary to reach saturation magnetostriction. Hence researches on giant magnetostriction have been concentrated on producing materials exhibiting a high value of magnetostriction in a low magentic field. The main research trend of the giant magnetostriction to obtain the large value in the low magnetic filed, fortunately as the signs of magnetocrystalline anisotropy constans in RFe$_2$intermetallic compounds alternate with the rare earth metals, has been to substitute the rare earth metal for others and hence to reduce the magnetocrystalline anisotropy energy. In addition, amorphous RFe$_2$alloys have been researched. In this research, both of the methods which are substitution of the rare earth metal and amorphization in RFe$_2$ intermetallic compounds are simultaneously conducted to obtain the large magnetostriction coefficient in the low external magnetic field. Among them, SmFe$_2$and PrFe$_2$are selected, and amorphized in substrate-free bulk state. Magnetism in amorphous bulk (Sm$_{1-x}$ Pr$_{x}$) Fe$_2$alloys is investigated in the low magnetic field.ld.

  • PDF

First Principle Studies on Magnetism and Electronic Structure of Perovskite Structured CoFeX3 (X = O, F, S, Cl) (페로브스카이트 구조를 가지는 CoFeX3(X = O, F, S, Cl) 합금의 자성과 전자구조에 대한 제일원리계산)

  • Jekal, Soyoung;Hong, Soon Cheol
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.6
    • /
    • pp.179-184
    • /
    • 2016
  • For an industrial spin-transfer torque (STT) MRAM, low switching current and high thermal stability are required, simultaneously. For this point of view, it is essential to find magnetic materials which satisfy high spin polarization and strong perpendicular magnetocrystalline anisotropy (MCA). In this paper, we investigate electronic structures and MCA energies of perovskite $CoFeX_3$ (X = O, F, S, Cl). For X = F and Cl, spin polarization at the Fermi level are 97 % and 96 %, respectively, which are close to a half metal. Furthermore, Co-terminated 5-monolayer (ML) $CoFeX_3$ (X = O, F, S, Cl) films show perpendicular MCA. In particular, the MCA energy of the Co-terminated $CoFeCl_3$ is about 1.0 meV/cell which is three times larger than that of a 5-ML CoFe film. Therefore, we expect to realize a magnetic material with high spin polarization and strong perpendicular MCA energy by utilizing group 6 and 7 elements in the periodic table, and to contribute to commercializing of the STT-MRAM.