• Title/Summary/Keyword: magneto-electric

검색결과 134건 처리시간 0.027초

Electromagnetothermoelastic behavior of a rotating imperfect hybrid functionally graded hollow cylinder

  • Saadatfar, M.;Aghaie-Khafri, M.
    • Smart Structures and Systems
    • /
    • 제15권6호
    • /
    • pp.1411-1437
    • /
    • 2015
  • The electro-magneto- thermo-elastic behavior of a rotating functionally graded long hollow cylinder with functionally graded piezoelectric (FGPM) layers is analytically analyzed. The layers are imperfectly bonded to its inner and outer surfaces. The hybrid cylinder is placed in a constant magnetic field subjected to a thermo-electro-mechanical loading and could be rested on a Winkler-type elastic foundation. The material properties of the FGM cylinder and radially polarized FGPM layers are assumed to be graded in the radial direction according to the power law. The hybrid cylinder is rotating about its axis at a constant angular velocity. The governing equations are solved analytically and then stresses, displacement and electric potential distribution are calculated. Numerical examples are given to illustrate the effects of material in-homogeneity, magnetic field, elastic foundation, applied voltage, imperfect interface and thermo-mechanical boundary condition on the static behavior of a FG smart cylinder.

MR 센서와 PIC를 이용한 비접촉식 정밀 유량계 개발에 관한 연구 (A Study on Development of a Noncontact Precision Flow-meter Using MR Sensor and PIC)

  • 이승희;이민철;고석조;장용석;최문호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1063-1066
    • /
    • 2003
  • A flow-meter and its measurement controller was developed for a hydraulic system. This study, for development of positive displacement flow-meter, consist of PIC(Peripheral Interface Controller) controller with MR(Magneto-resistive) sensors. This flow-meter is used valve position indicator for valve control system by hydraulic. The MR sensors are used for the rotation of OVAL gear that detecting device. In the ship environments, consideration that necessary explosive proof. Thus electro device or electro flow-meter needs explosion design for electric circuit. We designed noncontact type flow-meter and evaluated the safety and measuring abilities.

  • PDF

MR유체 스풀을 이용한 온-오프 밸브의 PWM제어 (PWM Control of On-Off Valves using MR Fluid Spool)

  • 양택주;배형섭;박명관
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1709-1712
    • /
    • 2003
  • Almost the on-off type solenoid valve is used to hydraulic system. It has a strong point that concerned about rapid response, electric and hydraulic characteristic at the same time. In this paper we produced the new type spool using the MR fluid different from the others. Also we controlled a cylinder position through PWM method. And using the AMESim software, We compared our new type spool valve with existed one from data of simulation and experiment.

  • PDF

Static stability analysis of smart nonlocal thermo-piezo-magnetic plates via a quasi-3D formulation

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.;Hani, Fatima Masood
    • Smart Structures and Systems
    • /
    • 제26권1호
    • /
    • pp.77-87
    • /
    • 2020
  • By employing a quasi-3D plate formulation, the present research studies static stability of magneto-electro-thermo-elastic functional grading (METE-FG) nano-sized plates. Accordingly, influences of shear deformations as well as thickness stretching have been incorporated. The gradation of piezo-magnetic and elastic properties of the nano-sized plate have been described based on power-law functions. The size-dependent formulation for the nano-sized plate is provided in the context of nonlocal elasticity theory. The governing equations are established with the usage of Hamilton's rule and then analytically solved for diverse magnetic-electric intensities. Obtained findings demonstrate that buckling behavior of considered nanoplate relies on the variation of material exponent, electro-magnetic field, nonlocal coefficient and boundary conditions.

슬롯리스 영구자석 동기 전동/발전기를 위한 설계변수 도출 (Design Parameter Deduction for Slotless Permanent Magnet Synchronous Motor/Generator)

  • 장석명;이운호;유대준;고경진;이정필
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.53-55
    • /
    • 2008
  • In high speed applications, the slotless permanent magnet(PM) motors appear an attractive solution, being almost insensitive to magneto-motive force harmonics and to pulse width modulation(PWM) current ripple and exhibiting lower stator iron losses and rotor losses (significant with square wave current control). So, this paper deals with methods for design of permanent magnet synchronous motor/generator.

  • PDF

Dynamic characteristics of hygro-magneto-thermo-electrical nanobeam with non-ideal boundary conditions

  • Ebrahimi, Farzad;Kokaba, Mohammadreza;Shaghaghi, Gholamreza;Selvamani, Rajendran
    • Advances in nano research
    • /
    • 제8권2호
    • /
    • pp.169-182
    • /
    • 2020
  • This study presents the hygro-thermo-electromagnetic mechanical vibration attributes of elastically restrained piezoelectric nanobeam considering effects of beam surface for various elastic non-ideal boundary conditions. The nonlocal Eringen theory besides the surface effects containing surface stress, surface elasticity and surface density are employed to incorporate size-dependent effects in the whole of the model and the corresponding governing equations are derived using Hamilton principle. The natural frequencies are derived with the help of differential transformation method (DTM) as a semi-analytical-numerical method. Some validations are presented between differential transform method results and peer-reviewed literature to show the accuracy and the convergence of this method. Finally, the effects of spring constants, changing nonlocal parameter, imposed electric potential, temperature rise, magnetic potential and moisture concentration are explored. These results can be beneficial to design nanostructures in diverse environments.

ER유체를 이용한 이방성 스퀴즈필름 댐퍼의 응답특성에 관한 연구 (A Modeling of a Variable-damping Mount Using Magneto-Rheological Fluid)

  • 안영공;양보석;삼하신
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.256-261
    • /
    • 2000
  • Electro-Rheological(ER) fluid is applied to a controllable squeeze film damper(SFD) for stabilizing a flexible rotor system. ER fluid is a class of functional fluid whose yield stress varies according to the applied electric field strength, which is observed as viscosity variation of the fluid. In applying ER fluid to a SFD, a pair of rings of the damper can be used as electrodes. When the electrodes are divided into a horizontal pair and a vertical one, the SFD can produce damping force in each direction independently. A prototype of the directionally controllable SFD was constructed and its performance was experimentally and numerically investigated in the present work.

  • PDF

ZTO 박막의 쇼키접합에 기인하는 자기저항특성 (Magnetoresistance Characteristics due to the Schottky Contact of Zinc Tin Oixide Thin Films)

  • 이향강;오데레사
    • 반도체디스플레이기술학회지
    • /
    • 제18권4호
    • /
    • pp.120-123
    • /
    • 2019
  • The effect of surface plasmon on ZTO thin films was investigated. The phenomenon of depletion occurring in the interface of the ZTO thin film created a potential barrier and the dielectric layer of the depletion formed a non-mass particle called plasmon. ZTO thin film represents n-type semiconductor features, and surface current by plasma has been able to obtain the effect of improving electrical efficiency as a result of high current at positive voltage and low current at negative voltage. It can be seen that the reduction of electric charge due to recombination of electronic hole pairs by heat treatment of compound semiconductors induces higher surface current in semiconductor devices.

Big data analysis via computer and semi numerical simulations for dynamic responses of complex nanosystems

  • Allam, Maalla;Xiaoping, Huang;Hongkai, Zhou
    • Advances in nano research
    • /
    • 제13권6호
    • /
    • pp.599-617
    • /
    • 2022
  • In the present research, for the first time, the vibrational as well as buckling characteristics of a three-layered curved nanobeam including a core made of functionally graded (FG) material and two layers of smart material-piezo-magneto-electric-resting on a Winkler Pasternak elastic foundation are examined. The displacement field for the nanobeam is chosen via Timoshenko beam theory. Also, the size dependency is taken into account by using nonlocal strain gradient theory, aka NSGT. Then, by employing Hamilton's principle, energy procedure, the governing equations together with the boundary conditions are achieved. The solution procedure is a numerical solution called generalized differential quadrature method, or GDQM. The accuracy and reliability of the formulation alongside solution method is examined by using other published articles. Lastly, the parameter which can alter and affect the buckling or vocational behavior of the curved nanobeam is investigated in details.

Assessment of multi-physical field effects on nonlinear static stability behavior of nanoshells based on a numerical approach

  • Zhanlei Wang;Ye Chen
    • Steel and Composite Structures
    • /
    • 제46권4호
    • /
    • pp.513-523
    • /
    • 2023
  • Buckling and post-buckling behaviors of geometrically perfect double-curvature shells made from smart composites have been investigated. The shell has been supposed to be exposed to transverse mechanical loading and magneto-electro-elastic (MEE) coupling. The composite shell has been made of two constituents which are piezoelectric and magnetic ingredients. Thus, the elastic properties might be variable based upon the percentages of the constituents. Incorporating small scale impacts in regard to nonlocal theory leads to the establishment of the governing equations for the double-curvature nanoshell. Such nanoshell stability will be shown to be affected by composite ingredients. More focus has been paid to the effects of small scale factor, electric voltage and magnetic intensity on stability curves of the nanoshell.