• Title/Summary/Keyword: magnetization mode

Search Result 32, Processing Time 0.02 seconds

The Magnetic Properties of $Co_{84}\;Hf_{16}$ Thin Films by FMR (강자성공명을 이용한 $Co_{84}\;Hf_{16}$ 박막의 자기적 성질 연구)

  • 김기현;장재호;김영호
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.4
    • /
    • pp.191-195
    • /
    • 1997
  • $Co_{84}Hf_{16}$ (1300$\AA$, 2150$\AA$) thin films were prepared by dc magnetron sputtering method. To investigate the uniaxial anisotrpy of the sample, the saturation and effective magnetization of the thin films were measured by VSM and FMR, respectively. The spectroscopic splitting g factor were estimated from the ferromagnetic resonance curves. For 1300$\AA$, 2150$\AA$, the effective magnetization was measured at the temperatures from T=77K to T=300K. The results were analyzed in terms of Bloch's law $M_s(T)=M_s(0)(1BT^{3/2}CT^{5/2}$. The Bloch coefficient B and C were determined by fitting. $M_{eff}(0)$ was obtained by extrapolating $M_{eff}$ to 0 K. From this result, the spinwave stiffness constants D was also determined and the exchange stiffness constants $A_{eff}$ were calculated by Kittel's resonance conditions.

  • PDF

Magnetic Properties of Electroless Co-Mn-P Alloy Deposits (무전해 Co-Mn-P 합금 도금층의 자기적 특성)

  • Yun, Seong-Ryeol;Han, Seung-Hui;Kim, Chang-Uk
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.274-281
    • /
    • 1999
  • Usually sputtering and electroless plating methods were used for manufacturing metal-alloy thin film magnetic memory devices. Since electroless plating method has many merits in mass production and product variety com­pared to sputtering method, many researches about electroless plating have been performed in the United State of America and Japan. However, electroless plating method has not been studied frequently in Korea. In these respects the purpose of this research is manufacturing Co-Mn-P alloy thin film on the corning glass 2948 by electroless plating method using sodium hypophosphite as a reductant, and analyzing deposition rate, alloy composition, microstructure, and magnetic characteristics at various pH's and temperatures. For Co-P alloy thin film, the reductive deposition reaction 0$\alpha$urred only in basic condition, not in acidic condition. The deposition rate increased as the pH and temperature increased, and the optimum condition was found at the pH of 10 and the temperature of $80^{\circ}C$. Also magnetic charac­teristics was found to be most excellent at the pH of 9 and the temperature of $70^{\circ}C$, resulting in the coercive force of 8700e and the squareness of 0.78. At this condition, the contents of P was 2.54% and the thickness of the film was $0.216\mu\textrm{m}$. For crystal orientation, we could not observe fcc for $\beta$-Co. On the other hand,(1010), (0002), (1011) orientation of hcp for a-Co was observed. We could confirm the formation of longitudinal magnetization from dominant (1010) and (1011) orientation of Co-P alloy. For Co-Mn-P alloy deposition, coercive force was about 1000e more than that of Co P alloy, but squareness had no difference. For crystal orientation, (l01O) and (lOll) orientation of $\alpha$-Co was dominant as same as that of Co- P alloy. Likewise we could confirm the formation of longitudinal magnetization.

  • PDF