• Title/Summary/Keyword: magnetic signal

Search Result 1,364, Processing Time 0.028 seconds

Magnetic Circular Dichroism Study of co Thin Films on Pd(111) Surface

  • Kim, Wookje;Kim, Wondong;Kim, Hyunjo;Kim, Jae-Young;Hoon Kho;Park, J.H.;Oh, S.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.169-169
    • /
    • 1999
  • We studied magnetic properties of co thin films deposited on Pd (111) surface, which attracted much attention recently due to the perpendicular magnetic anisotropy, using magnetic circular dichroism(MCD). Special attention was paid on the effect of Pd capping and interface roughness on the direction of magnetic easy axis, and for that purpose MCD signals for all Co thicknesses were measured with two different ways : in-plane and out-of-plane geometry. In case of bare Co films deposited on smooth Pd(111) surface, no MCD signal was observed under 4$\AA$ co thickness. At 4$\AA$ Co thickness, MCD signal at the out-of-plane geometry was observed, and for thicker Co films, only in-plane MCD signal was measured. This type of magnetic easy axis transition has been reported for other cases like Co/Pt system. The effect of 5$\AA$ Pd capping on these bare Co films made an remarkable change on the transition of magnetic easy axis. Out-of-plane MCD signals exists up to 20$\AA$ Co thickness, and disappears at 24$\AA$ Co thickness. In-plane MCD signals first appears at 10$\AA$ Co thickness and gradually increases up to 24$\AA$ Co thickness. Between 10$\AA$ and 20$\AA$ Co thickness, in-plane and out-of-plane MCD signal coexist. The formation of multi-domain structure or the existence of tilted magnetic easy axis is an possible scenario for such an interesting coexistence. The effect of interface roughness was also tested by measuring MCD signal on Co films deposited on un-annealed Pd(111) surface. Out-of-plane MCD signal was observed up to 8$\AA$ Co thickness and the anisotropy of MCD signal at 4$\AA$ Co thickness was very large with respect to that of Co film deposited on the smooth substrate. Above 8$\AA$ thickness, there exists only in-plane MCD signal. From above results, it was concluded that both Pd capping and interface roughness induce and reenforce the perpendicular magnetic anisotropy. The large perpendicular magnetic anisotropy of Co/Pd multilayer system made by sputtering method can be well understood from our results.

  • PDF

New Implementation Method of the Pulsed Nuclear Magnetic Resonance Apparatus (펄스방식의 핵자기 공명장치에 관한 새로운 구현방법)

  • 김청월
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.10
    • /
    • pp.1-11
    • /
    • 1998
  • This paper presents a new implementation method of the pulsed NMR(nuclear magnetic resonance) apparatus, which contains a single coil in a magnet console, to detect a NMR signal. Applying an RF magnetic field of 5MHz to the magnet console which is designed to have Larmor frequency of 5MHz for hydrogen atom, the hydrogen NMR signal was obtained from the glycerin which was put in the magnet console as a sample. The DC magnetic field in the magnet console was implemented with a permanent magnet of 1168 gauss and the RF magnetic field was generated appling an RF signal with the frequency of 5MHz and the current magnitude of 8A to a coil of 5.73${\mu}$H. The magnitude of the NMR signal was maximum when the RF magnetic field was generated for 2.8 ${\mu}$sec, and the period of generating the RF magnetic field was designed to 100msec for detecting the NMR signal repeatedly. The NMR signal, radiated from the sample in the magnetic console, was appeared as an amplitude-modulated signal with a frequency equal to the Larmor frequency. The signal, induced in the coil, was amplified in the tx/rx separation circuit, preamplifier and intermediate amplifier by a factor of 20.7dB, 36dB and 40dB, respectively, and the signal was detected by a synchronous detection circuits, then the NMR signal was obtained.

  • PDF

Magnetic Resonance Imaging with Intermolecular Double Quantum Coherences

  • Ahn, Sang-Doo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.8 no.2
    • /
    • pp.108-114
    • /
    • 2004
  • Recently a new method for magnetic resonance imaging based on the detection of relatively strong signal from intermolecular multiple quantum coherences (iMQCs) is reported. Such a signal would not be observable in the conventional framework of magnetic resonance; it originates in long-range dipolar couplings that are traditionally ignored. In this paper, we present the results of experimental studies to assess the feasibility of intermolecular double quantum coherences (iDQCs) imaging in humans. We show that the iDQC images are readily observable at 4T and that they do indeed provide different contrast than appears in conventional images.

  • PDF

RF Integrated Electromagnetic-Noise Filters Incorporated with Nano-granular Co41Fe38AI13O8 Soft Magnetic Thin Films on Coplanar Transmission Line

  • Sohn, Jae-Cheon;Yamaguchi Masahiro;Lim, Sang-Ho;Han, Suk-Hee
    • Journal of Magnetics
    • /
    • v.10 no.4
    • /
    • pp.163-170
    • /
    • 2005
  • The RF integrated noise filters are fabricated by photolithography. The stack for the electromagnetic noise filters consists of the nano-granular ($Co_{41}Fe_{38}AI_{13}O_8$) soft magnetic film / $SiO_2$ / Cu transmission line / seed layer (Cu/Ti) / $SiO_2$-substrate. A good signal-attenuation feature along with a low signal-reflection feature is observed in the present filters. Especially in the noise filter incorporated with a $Co_{41}Fe_{38}AI_{13}O_8$ magnetic film with lateral dimensions of $2000{\mu}m$ wide, 15 mm long and $1{\mu}m$ thick, the maximum magnitude of signal attenuation reaches -55 dB, and the magnitude of signal reflection is below -10 dB in the overall frequency range. And this level of signal attenuation is much larger than that of a noise filter incorporated with a Fe magnetic film.

Optimization of a Radio-frequency Atomic Magnetometer Toward Very Low Frequency Signal Reception

  • Lee, Hyun Joon;Yu, Ye Jin;Kim, Jang-Yeol;Lee, Jaewoo;Moon, Han Seb;Cho, In-Kui
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.213-219
    • /
    • 2021
  • We describe a single-channel rubidium (Rb) radio-frequency atomic magnetometer (RFAM) as a receiver that takes magnetic signal resonating with Zeeman splitting of the ground state of Rb. We optimize the performance of the RFAM by recording the response signal and signal-to-noise ratio (SNR) in various parameters and obtain a noise level of 159 $fT{\sqrt{Hz}}$ around 30 kHz. When a resonant radiofrequency magnetic field with a peak amplitude of 8.0 nT is applied, the bandwidth and signal-to-noise ratio are about 650 Hz and 88 dB, respectively. It is a good agreement that RFAM using alkali atoms is suitable for receiving signals in the very low frequency (VLF) carrier band, ranging from 3 kHz to 30 kHz. This study shows the new capabilities of the RFAM in communications applications based on magnetic signals with the VLF carrier band. Such communication can be expected to expand the communication space by overcoming obstacles through the high magnetic sensitive RFAM.

Playback Signal Processing in a Digital High Density Magnetic Recording System (디지털 고밀도 자기기록 장치의 재생신호 처리에 관한 연구)

  • 이상록;박시우;박선기;박진우
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.12
    • /
    • pp.31-39
    • /
    • 1993
  • In the playback signal processing of a digital magnetic recording system, the major signal processing processes consist of pulse equalization. pulse detection, clock recovery, and data recovery. Equalizer which compensates interference occurrde between pulses recorded in high density on a magnetic media is realized by pulse slimming method, and pulse detection by a integrating detector. Clock recovery from the detector output was accomplished by using PLL. and data recovery to reduce noise effects was carried out by utilizing the three sampling clocks recovered in clock recovery process. In this paper these processes are implemented in hardware and its performance is evaluated by experimenting with a commercial DAT. It was found that the playback signal processor proposed is suitable to the practical high density magnetic recording system.

  • PDF

Analysis of Signal-to-Noise Ratio in High Field Multi-dimensional Magnetic Resonance Imaging (고자장 다차원 자기공명영상에서 신호대잡음비 분석)

  • Ahn, C.B.;Kim, H.J.;Chang, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2783-2785
    • /
    • 2003
  • In multi-dimensional magnetic resonance imaging, data is obtained in the spatial frequency domain. Since the signal variation in the spatial frequency domain is much larger than that in the spatial domain, analog-to-digital converts with wide conversion bits are required. In this paper, the quantization noise in magnetic resonance imaging is analyzed. The signal-to-quantization noise ratio(SQNR) in the reconstructed image is derived from the level of quantization in the data acquisition. Since the quantization noise is proportional to the signal amplitude, it becomes more dominant in high field imaging. Using the derived formula the SQNR for several MRI systems are evaluated, and it is shown that the quantization noise can be a limiting factor in high field imaging, especially in three dimensional imaging in magnetic resonance imaging.

  • PDF

A Potential Diagnostic Pitfall in the Differentiation of Hemorrhagic and Fatty Lesions Using Short Inversion Time Inversion Recovery: a Case Report

  • Kim, Jee Hye;Kang, Woo Young;Cho, Bum Sang;Yi, Kyung Sik
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.3
    • /
    • pp.181-184
    • /
    • 2016
  • Short inversion time inversion recovery (STIR) is widely used for spinal magnetic resonance imaging (MRI) because the pulse sequence of STIR is insensitive to magnetic field inhomogeneity and can be used to scan a large field of view. In this case report, we present a case of spinal epidural hematoma with unexpected signal decrease on a STIR image. The MRI showed an epidural mass that appeared with high signal intensity on both T1- and T2-weighted images. However, a signal decrease was encountered on the STIR image. This nonspecific decrease of signal in tissue with a short T1 relaxation time that is similar to that of fat (i.e., hemorrhage) could lead to a diagnostic pitfall; one could falsely diagnose this decrease of signal as fat instead of hemorrhage. Awareness of the nonselective signal suppression achieved with STIR pulse sequences may avert an erroneous diagnosis in image interpretation.

A Theory of the Geological Magnetic Filter for the Improvement of the Signal to Noise Ratio of the Magnetic Detection System (자기 이상검출 시스템의 신호 대 잡음비 개선을 위한 자기환경 필터 이론)

  • Kim, Won-Ho;Kim, Eun-Ro;Yang, Chang-Sub;Choi, In-Kyu;Choi, Jun-Rim;Park, Jong-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.458-465
    • /
    • 1997
  • In this paper, a theory of the geological magnetic filter for the improvements of the signal to noise ratio of the magnetic detection system has been developed. The geological magnetic filter takes two sequences of magnetic fields measured from the reference sensor and the detector sensor and calculate the correlations between them in the frequency domain. Using the filter, we can remove the coherent noises in the time domain and improve the signal to noise ratio of the magnetic detection system. With the recent developments of the DSP hardware technology the geological magnetic filter can be easily implemented using the digital signal processor. We show the ability of the geological magnetic filter under various circumstances through computer simulations. Numerical simulation results show that geological magnetic filter can excellently remove the sensor misalignment effects and the regular short range local noise as well as it delete the coherent noises.

  • PDF

Low Magnetic Field MRI Visibility of Rubber-Based Markers

  • Kim, Jeong Ho;Jung, Seongmoon;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.89-93
    • /
    • 2019
  • Purpose: This study aims to develop new markers based on silicone rubber and urethane rubber to enhance visibility in low magnetic field magnetic resonance (MR) imaging. Methods: Four types of markers were fabricated using two different base materials. Two of the markers were composed of two different types of silicone rubber: DragonSkin™ 10 MEDIUM and BodyDouble™ SILK. The other two markers were composed of types of urethane rubber: PMC™ 780 DRY and VytaFlex™ 20. Silicone oil (KF-96 1000cs) was added to the fabricated markers. The allocated amount of oil was 20% of the weight (wt%) of each respective marker. The MR images of the markers, with and without the silicone oil, were acquired using MRIdian with a low magnetic field of 0.35 T. The signal intensities of each MR image for the markers were analyzed using ImageJ software and the visibility for each was compared. Results: The highest signal intensity was observed in VytaFlex™ 20 (279.67±3.57). Large differences in the signal intensities (e.g., 627% in relative difference between BodyDouble™ SILK and VytaFlex™ 20) among the markers were observed. However, the maximum difference between the signal intensities of the markers with the silicone oil showed only a 62% relative difference between PMC™ 780 DRY and DragonSkin™ 10 MEDIUM. An increase in the signal intensity of the markers with the silicone oil was observed in all markers. Conclusions: New markers were successfully fabricated. Among the markers, DragonSkin™ 10 MEDIUM with silicone oil showed the highest MR signal intensity.