• Title/Summary/Keyword: magnetic scale

Search Result 694, Processing Time 0.026 seconds

Buckling and free vibration analysis of FG-CNTRC-micro sandwich plate

  • Kolahdouzan, Farzad;Arani, Ali Ghorbanpour;Abdollahian, Mohammad
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.273-287
    • /
    • 2018
  • Buckling and free vibration analysis of sandwich micro plate (SMP) integrated with piezoelectric layers embedded in orthotropic Pasternak are investigated in this paper. The refined Zigzag theory (RZT) is taken into consideration to model the SMP. Four different types of functionally graded (FG) distribution through the thickness of the SMP core layer which is reinforced with single-wall carbon nanotubes (SWCNTs) are considered. The modified couple stress theory (MCST) is employed to capture the effects of small scale effects. The sandwich structure is exposed to a two dimensional magnetic field and also, piezoelectric layers are subjected to external applied voltages. In order to obtain governing equation, energy method as well as Hamilton's principle is applied. Based on an analytical solution the critical buckling loads and natural frequency are obtained. The effects of volume fraction of carbon nanotubes (CNTs), different distributions of CNTs, foundation stiffness parameters, magnetic and electric fields, small scale parameter and the thickness of piezoelectric layers on the both critical buckling loads and natural frequency of the SMP are examined. The obtained results demonstrate that the effects of volume fraction of CNTs play an important role in analyzing buckling and free vibration behavior of the SMP. Furthermore, the effects of magnetic and electric fields are remarkable on the mechanical responses of the system and cannot be neglected.

Soft x-ray magneto-optical effect as a nanometer scale probe of heteromagnetic structures widely used in spintronics devices

  • Kim, Sang-Koog
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2003.05a
    • /
    • pp.7-7
    • /
    • 2003
  • Heteromagnetic nanostructures, which consist of two or more different layers such as nonmagnet, insulator, ferromagnet, antiferromagnet, and superconductor, have been widely used in current and likely future spintronics devices. Their many intriguing magnetic properties are originated from a variety of magnetic interactions at relevant length scales at or near interfaces and between different constituent layers as well as laterally different regions in chemical and magnetic heterogeneity. The fundamental properties can thus differ along depth and laterally in the film plane, depending on their relevant coupling length scales. The entire properties may be characterized by interface properties and/or the depth-varying properties of the individual constituent layers, and lateral inhomogeneity as well. It is a challenge to investigate both depth-varying properties and lateral heterogeneity in such heteromagnetic nanostructures. In this talk, soft x-ray magneto-optical effect as a nanometer scale probe of a variety of heteromagnetic structures is presented and its related noble techniques are introduced. For instances, magnetization vector imaging to investigate vector spin configurations in the film plane is presented, as well as the Kerr rotation, ellipticity, and intensity measurements as a depth sensitive probe on the atomic scales.

  • PDF

Thermo-electro-elastic nonlinear stability analysis of viscoelastic double-piezo nanoplates under magnetic field

  • Ebrahimi, Farzad;Hosseini, S. Hamed S.;Selvamani, Rajendran
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.565-584
    • /
    • 2020
  • The nonlinear thermo-electro-elastic buckling behavior of viscoelastic nanoplates under magnetic field is investigated based on nonlocal elasticity theory. Employing nonlinear strain-displacement relations, the geometrical nonlinearity is modeled while governing equations are derived through Hamilton's principle and they are solved applying semi-analytical generalized differential quadrature (GDQ) method. Eringen's nonlocal elasticity theory considers the effect of small size, which enables the present model to become effective in the analysis and design of nano-sensors and nano actuators. Based on Kelvin-Voigt model, the influence of the viscoelastic coefficient is also discussed. It is demonstrated that the GDQ method has high precision and computational efficiency in the buckling analysis of viscoelastic nanoplates. The good agreement between the results of this article and those available in literature validated the presented approach. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as electric voltage, small scale effects, elastomeric medium, magnetic field, temperature effects, the viscidity and aspect ratio of the nanoplate on its nonlinear buckling characteristics. It is explicitly shown that the thermo-electro-elastic nonlinear buckling behavior of viscoelastic nanoplates is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of viscoelastic nanoplates as fundamental elements in nanoelectromechanical systems.

Storm-Time Behaviour of Meso-Scale Field-Aligned Currents: Case Study with Three Geomagnetic Storm Events

  • Awuor, Adero Ochieng;Baki, Paul;Olwendo, Joseph;Kotze, Pieter
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.133-147
    • /
    • 2019
  • Challenging Minisatellite Payload (CHAMP) satellite magnetic data are used to investigate the latitudinal variation of the storm-time meso-scale field-aligned currents by defining a new metric called the FAC range. Three major geomagnetic storm events are considered. Alongside SymH, the possible contributions from solar wind dynamic pressure and interplanetary magnetic field (IMF) $B_Z$ are also investigated. The results show that the new metric predicts the latitudinal variation of FACs better than previous studies. As expected, the equatorward expansion and poleward retreat are observed during the storm main phase and recovery phase respectively. The equatorward shift is prominent on the northern duskside, at ${\sim}58^{\circ}$ coinciding with the minimum SymH and dayside at ${\sim}59^{\circ}$ compared to dawnside and nightside respectively. The latitudinal shift of FAC range is better correlated to IMF $B_Z$ in northern hemisphere dusk-dawn magnetic local time (MLT) sectors than in southern hemisphere. The FAC range latitudinal shifts responds better to dynamic pressure in the duskside northern hemisphere and dawnside southern hemisphere than in southern hemisphere dusk sector and northern hemisphere dawn sector respectively. FAC range exhibits a good correlation with dynamic pressure in the dayside (nightside) southern (northern) hemispheres depicting possible electrodynamic similarity at day-night MLT sectors in the opposite hemispheres.

Asymmetric channel model for a perpendicular magnetic recording system with a ring-head (Ring-헤드를 갖는 수직 자기기록 시스템을 위한 비대칭 채널 모델)

  • Lee, Joo-Hyun;Lee, Jae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1C
    • /
    • pp.45-49
    • /
    • 2004
  • An image enhancement method using modified anisotropic diffusion filter is proposed in this paper. It employs sensor noise estimation and scale space methods based on the minimum reliable scale. Then the anisotropic diffusion filter is modified by the calculated critical value function and local gradient. Through simulation, it is verified that the proposed algorithm has the capability of little or no noise amplification in homogenous region as well as superior edge enhancement.

Constructing Overhauser Dynamic Nuclear Polarization-Nuclear Magnetic Resonance System Using Benchtop Electron Paramagnetic Resonance Spectrometer

  • Saun, Seung-Bo;Kim, JiWon;Han, Oc Hee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.2
    • /
    • pp.34-39
    • /
    • 2018
  • The Nuclear Magnetic Resonance (NMR) technique using Dynamic Nuclear Polarization (DNP) procedures is one of the promising techniques that enable overcoming low sensitivity problems in NMR spectroscopy. We constructed an ODNP-NMR system using a commercial benchtop EPR spectrometer. The $^1H$ NMR peak area of water in aqueous solutions of 4-hydroxy-TEMPO was enhanced more than 95 times in the ODNP-NMR experiments. Our signal enhancement results were about 55% of the previously reported result. This could be due to non-uniform microwave power over a sample and unwanted sample heating by microwave. However, this portable ODNP-NMR spectrometer will be eventually useful for site-specific detection with nano-scale spatial resolutions and molecular dynamics studies with significantly improved signal sensitivity.

magnetic Field Analysis of Background Magnet in SSTF(Samsung Superconducting Test Facility) (삼성 초전도 시험설비의 외부자장 발생용 자석의 자기장 해석)

  • ;王秋良
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.147-149
    • /
    • 2000
  • Samsung Superconducting Test Facility (SSTF) will be built at SAIT, Taejeon. The superconducting cables to be used for KSTAR magnets are going to be tested in SSTF. The background magnet in SSTF is needed to simulate harsh magnetic environment for testing short CICC samples as well as full-scale magnets. The main coils can make central magnetic field of up to 8 Tesla and the blip coils can maintain fast ramping rate of 20T/s. The cancellation coils reduce the disturbance of main coils due to blip coils. The magnetic field distribution of these coils has been obtained with finite element method as well as the direct integration method.

  • PDF

Finite Element Analysis of Perpendicular Magnetic Recording System using PREISACH Model (PREISACH 모델을 이용한 수직자기기특장치의 유한요소해석)

  • Lee, Hyang-Beom;Park, Gwan-Soo;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.15-18
    • /
    • 1990
  • In this paper, perpendicular magnetic recording system which consists of a single pole head and a double, layer medium is analyzed by using 2D-finite element simulation and Preisach model for describing hysteresis characteristics. For confirming this method, we compare the calculated magnetic field intensity which is above the isolated transition of magnetization and scale up experimental data which have already published. The results show a good agreement and we can conclude that this method is very useful to analyze perpendicular magnetic recording system.

  • PDF

Drift Self-compensating Type Flux-meter for Automatic Magnetic Flux Measurement

  • Ga, E.M.;Son, D.;Bak, J.G.;Lee, S.G.
    • Journal of Magnetics
    • /
    • v.8 no.4
    • /
    • pp.160-163
    • /
    • 2003
  • In magnetic flux measurement, output voltage drift of electronic integrator is an essential problem. In this work, we have developed a new kind of Miller type integrator using a sample and hold amplifier. Input bias current was measured and this value was hold in the sample and hold amplifier, after that input bias current of Miller integrator was compensated automatically using the value which holds in the sample and hold amplifier. Developed flux-meter shows the drift of flux-meter are smaller than 10$^{-5}$ Wb/min in full scale of 10$^{-2}$, and we could also measure multi-channel magnetic flux simultaneously.

Chromospheric Transient Brightenings associated with Canceling Magnetic Features

  • Park, Soyoung;Chae, Jongchul;Park, Sunghong;Bong, Suchan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.130.1-130.1
    • /
    • 2012
  • Canceling magnetic features (CMFs) are likely to be a result of magnetic reconnection in the lower atmosphere of the Sun. CMFs are related with chromospheric phenomena such as brightening or jets. In order to observe the fine-scale and highly dynamical structures in the chromospheres, Fast Imaging Solar Spectrograph (FISS) was developed and installed at 1.6 m New Solar Telescope at Big Bear Solar Observatory. Using this FISS data we have studied chromospheric brightenings associated with CMFs. As a result, the chromospheric brightenings related with CMFs have stronger shock waves than one of other regions such as internetwork regions or unipolar magnetic elements

  • PDF