• Title/Summary/Keyword: magnetic refrigerator

Search Result 19, Processing Time 0.022 seconds

Review on innovative small refrigeration methods for sub-Kelvin cooling

  • Dohoon, Kwon;Junhyuk, Bae;Sangkwon, Jeong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.71-77
    • /
    • 2022
  • Sub-Kelvin cooling has been generally demanded for the fields of low temperature physics, such as physical property measurements, astronomical detection, and quantum computing. The refrigeration system with a small size can be appropriately introduced when the measurement system does not require a high cooling capacity at sub-Kelvin temperature. The dilution refrigerator which is a common method to reach sub-Kelvin, however, must possess a large 3He circulation equipment at room temperature. As alternatives, a sorption refrigerator and a magnetic refrigerator can be adopted for sub-Kelvin cooling. This paper describes those coolers which have been developed by various research groups. Furthermore, a cold-cycle dilution refrigerator of which the size of the 3He circulation system is minimized, is also introduced. Subsequently, a new concept of dilution refrigerator is proposed by our group. The suggested cooler can achieve sub-Kelvin temperature with a small size since it does not require any recuperator and turbo-molecular vacuum pump. Its architecture allows the compact configuration to reach sub-Kelvin temperature by integrating the sorption pump and the magnetic refrigerators. Therefore, it may be suitably utilized in the low temperature experiments requiring low cooling capacity.

A Study on Magnetic Property Improvement of Rubber Magnets for Heat Loss Reduction of a Refrigerator

  • Ahn, WonSool;Lee, Haakil;Ha, Ji Soo
    • Elastomers and Composites
    • /
    • v.51 no.1
    • /
    • pp.38-42
    • /
    • 2016
  • For improving the heat loss of a refrigerator around door gasket, it is very important to reduce the amount of rubber magnet used, of which thermal conductivity is much higher than the plastics, and enhancing the magnetic properties of rubber magnet itself is crucial for this. In the present study, therefore, a relationship between the optimum conditions of rubber magnet fabrication process and raw material compositions in the ferrite powder/CPE binder compounds was investigated for finding a way to enhance the magnetic properties of rubber magnet. Magnetic attraction forces of a sample rubber magnet was measured as function of distance, and thermal properties of the sample ferrite powder/CPE binder compound were analyzed with TG/DTA thermal analyzer. As a results, a rubber magnet strip with enhanced magnetic properties was expected to be fabricated, of which raw material compound was prepared by compounding with higher ferrite magnetic powder concentration.

Development of the active magnetic regenerative refrigerator for room temperature application (상온 능동형 자기 재생 냉동기의 개발)

  • Park, I.;Kim, Y.;Jeong, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.60-64
    • /
    • 2012
  • In this paper, an investigation of a room temperature active magnetic regenerative refrigerator is carried out. Experimental apparatus includes two active magnetic regenerators containing 186 g of Gd spheres. Four E-type thermocouples are installed inside the Active magnetic regenerator(AMR) to observe the instantaneous temperature variation of AMR. Both warm and cold heat exchangers are designed for large temperature span. The cold heat exchanger, which separates the two AMRs, employs a copper tube with length of 80 mm and diameter of 6.35 mm. In order to minimize dead volume between the warm heat exchanger and AMRs, the warm heat exchangers are located close to the AMRs. The deionized water is used as a heat transfer fluid, and maximum 1.4 T magnetic field is supplied by Halbach array of permanent magnets. The AMR plate, which contains the warm and the cold heat exchangers and the AMRs, has reciprocating motion using a linear actuator and each AMR is alternatively magnetized and demagnetized by a Halbach array of permanent magnet. Since the gap of the Halbach array of permanent magnets is 25 mm and two warm heat exchangers have the motion through it, a compact printed circuit heat exchanger (PCHE) is used as a warm heat exchanger. A maximum no-load temperature span of 26.8 K and a maximum cooling power of 33 W are obtained from the fabricated Active Magnetic Regenerative Refrigerator (AMRR).

Magnetic Shielding Effect on Halbach Cylinder used in Magnetic Refrigerators

  • Baek, Un Bong;Lee, Jong Suk;Yu, Seong-Cho;Ryu, Kwon-Sang
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.349-352
    • /
    • 2014
  • The system for producing magnetic field constitutes an important component of magnetic refrigerator. Many researchers have directed significant effort to increase the magnetic field intensity, because the magnetocaloric effect at the Curie temperature increases with the power of 2/3 of the magnetic field. In this study, we report the simulation of the magnetic field intensity at polar axis of a Halbach cylinder (HC) by i) changing the length and thickness of the HC, ii) having with or without gap of the HC, and iii) surrounding the HC with a soft magnet shell, acting as a shielding. We simulated the field distribution of a HC with a finite size. Furthermore, the detailed numerical results of the magnetic field distribution and its dependence on shielding are presented in this study.

AC loss of HTS magnet for AMR refrigerator using magnetic field formulation and edge element in cylindrical coordinates

  • Kim, Seokho;Park, Minwon;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.29-34
    • /
    • 2013
  • AMR (Active Magnetic Regenerative) refrigerators require the large variation of the magnetic field and a HTS magnet can be used. The amount of AC loss is very important considering the overall efficiency of the AMR refrigerator. However, it is very hard to estimate the precise loss of the HTS magnet because the magnetic field distribution around the conductor itself depends on the coil configuration and the neighboring HTS wires interact each other through the distorted magnetic field by the screening current Therefore, the AC loss of HTS magnet should be calculated using the whole configuration of the HTS magnet with superconducting characteristic. This paper describes the AC loss of the HTS magnet by an appropriate FEM approach, which uses the non-linear characteristic of HTS conductor. The analysis model is based on the 2-D FEM model, called as 'magnetic field formulation and edge-element model', for whole coil configuration in cylindrical coordinates. The effects of transport current and stacked conductors on the AC loss are investigated considering the field-dependent critical current. The PDE model of 'Comsol multiphysics' is used for the FEM analysis with properly implemented equations for axisymmetric model.

Design of Adiabatic Demagnetization Refrigerator for Hydrogen Re-Liquefaction (수소 재액화용 단열 탈자 냉동기의 설계)

  • Park, Ji-Ho;Kim, Young-Kwon;Jeong, Sang-Kwon;Kim, Seok-Ho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.53-59
    • /
    • 2012
  • Adiabatic demagnetization refrigerator (ADR) for hydrogen re-liquefaction operating between 24 K and 20 K has been designed. $Dy_{0.9}Gd_{0.1}Ni_2$, whose Curie temperature is 24 K, is selected as a magnetic refrigerant. The magnetic refrigerant powder is sintered with oxygen-free high purity copper (OFHC) powder to enhance its effective thermal conductivity as well as to achieve relatively high frequency. A perforated plate heat exchanger (PPHE) operated with forced convection is utilized as a heat switch. The forced convection heat switch is expected to have fast response relative to a conventional gas-gap heat switch. A conduction-cooled high Tc superconducting (HTS) magnet is employed to apply external magnetic field variation on a magnetic refrigerant. $2^{nd}$ generation GdBCO coated conductor HTS tape with Kapton$^{(R)}$ insulation (SUNAM Inc.) will be utilized for the HTS magnet. The magnetization and demagnetization processes are to be achieved by the AC operation of the HTS magnet. The designed magnetic field and target ramp rate of the HTS magnet are over 4 T with 180 A and 0.4 T/s, respectively. AC loss distribution on HTS magnet is theoretically estimated.

The Study of the performance analysis of the inertance Pulse Tube refrigerator (관성관 맥동관 냉동기의 성능에 관한 해석적 연구)

  • 홍용주;박성제;김효봉;최영돈
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.159-162
    • /
    • 2003
  • Cooling with easy, reliable cryocooler is highly desirable for the commercial and military application The pulse tube refrigerator has no moving parts at the cold end, so that the mechanical vibration and magnetic noise can be reduced to the low level with higher relaibility and longer lifetime than the Stilting cryocooler. The inertance tube improve the performance of pulse tube refrigerator by providing optimal phase shift between pressure and amss flow rate, and it is easiest to implement at large cooling capacity and high operating frequency. In this study, the performance of the inertance pulse tube refrigerator was investigated by analysis. The results show the influence of the diameter and length of the inertance tube on the performance of the refrigerator.

  • PDF

Prediction model of 4.5 K sorption cooler for integrating with adiabatic demagnetization refrigerator (ADR)

  • Kwon, Dohoon;Kim, Jinwook;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.1
    • /
    • pp.23-28
    • /
    • 2022
  • A sorption cooler, which utilizes helium-4 as a working fluid, was previously developed and tested in KAIST. The cooler consists of a sorption pump and a thermosyphon. The developed sorption cooler aims to pre-cool a certain amount of the magnetic refrigerant of an adiabatic demagnetization refrigerator (ADR) from 4.5 K to 2.5 K. To simulate the high heat capacitance of the magnetic refrigerant, liquid helium was utilized not only as a refrigerant for the sorption cooling but also as a thermal capacitor. The previous experiment, however, showed that the lowest temperature of 2.7 K which was slightly higher than the target temperature (2.5 K) was achieved due to the radiation heat leak. This excessive heat leak would not occur when the sorption cooler is completely integrated with the ADR. Thus, based on the experimentally obtained pumping speed, the prediction model for the sorption cooler is developed in this study. The presented model in this paper assumes the sorption cooler is integrated with the ADR and the heat leak is negligible. The model predicts the amount of the liquid helium and the required time for the sorption cooling process. Furthermore, it is confirmed that the performance of the sorption cooler is enhanced by reducing the volume of the thermosiphon. The detailed results and discussions are summarized.

Experimental investigation on the room temperature active magnetic regenerator with permanent magnet array (영구자석 배열을 이용한 능동형 자기재생 냉동기에 대한 실험적 연구)

  • Kim, Young-Kwon;Jeong, Sang-Kwon
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.186-191
    • /
    • 2008
  • In this study, a room temperature AMRR (Active magnetic regenerative refrigerator) was fabricated, and experimentally investigated. Gadolinium (Gd) was selected as a magnetic refrigerant with Curie temperature of 293 K. Permanent magnet was utilized to magnetize and demagnetize the AMR. To produce large magnetic field above 1 T in the magnetic refrigeration space, a special arrangement of permanent magnets, so called Halbach array, is employed. Sixteen segments of the permanent magnets magnetized different direction, constitute a hollow cylindrical shaped permanent magnet. The AMR is reciprocated along the bore of the magnet array and produces cooling power. Helium is selected as the working fluid and a helium compressor is utilized to supply helium flow to the regenerator. The fabricated AMRR has different structure and compared to a convectional AMRR since it has an additional volume after the regenerator. Therefore, the cooling ability is generated not only by magnetocaloric effect of magnetic refrigerant but also by the pulse tube effect. It is verified that the cooling ability of AMR is increased due to the magnetocalric effect by the fact that the temperature span becomes $16^{\circ}C$ while the temperature span is only $8^{\circ}C$ when the magnetic field is not applied to the regenerator.

  • PDF