• 제목/요약/키워드: magnetic positioning system

검색결과 99건 처리시간 0.023초

Switched Reluctance 추진 원리에 기초한 자기 부상형 위치결정기구 (A Magnetic Suspension Stage Based on the Switched Reluctance Propulsion Principle)

  • 이상헌
    • 대한기계학회논문집A
    • /
    • 제30권6호
    • /
    • pp.622-630
    • /
    • 2006
  • This paper is about the magnetic suspension stage based on the Switched Reluctance propulsion principle. Because the previous studies on contact-free stage adopted the Lorentz force for main force generation mechanism they have suffered from thermal problem deteriorating the precision. Thus, the magnetic suspension stage adopting SR principle which can achieve high force density is proposed. The main operating principle and structure for achieving high resolution and long travel range are represented. The magnetic force analysis of each actuator, providing back data for dynamic modeling and controller design are carried out. By conducting basic experiments, the feasibility of the proposed system is shown. In addition the problems which should be improved and their solutions are represented.

차량용 오디오/AV수신기의 방송 수신 전파환경 측정, 분석과 재현 프로그램 개발 (Development of a Program for Measurement, Analysis, and Simulation of Electromagnetic Environment for Automobile AV Receivers)

  • 이기섭;이중근
    • 한국전자파학회논문지
    • /
    • 제16권3호
    • /
    • pp.293-299
    • /
    • 2005
  • 차량에 장착된 AV수신기의 성능에 영향을 주는 전파환경의 측정, 분석과 재현 기능을 통합한 프로그램을 개발하였다. 프로그램은 GPS(Global Positioning System)를 이용한 "위치별 전계 측정프로그램", "선택 대역 전계 측정프로그램"과 DB화된 데이터를 이용한 "전파환경 재현 프로그램"의 독립적인 부분들로 구성하였다. 또한 측정 및 분석, 재현 시스템의 설정방법을 제시하였다. 이러한 연구결과는AV시스템의 수신 이상 현상의 원인을 정확히 밝혀내는데 도움이 될 것이며, 동일한 현상을 현장이 아닌 전자파 무반사실내의 시뮬레이션 시스템 상에서 확인하고, 이상 현상에 대한 대응방안을 찾을 수 있게 될 것이다.

압축 공기 냉각을 이용한 자기 변형 구동기의 열해석에 관한 연구 (A Study on Thermal Analysis for Magnetostrictive Actuator Using Compressed Air Cooling)

  • 곽용길;;황진동;김선호;안중환
    • 한국생산제조학회지
    • /
    • 제18권4호
    • /
    • pp.388-394
    • /
    • 2009
  • Precision positioning system with magnetostrictive actuator(MA) has widely used in manufacturing devices to control the positioning accuracy to meet the high load and stroke requirements. It has many advantage in comparison with piezoelectic actuator; high force, high strain, high efficient etc. But, the performance of Terfenol-D, the commercially available magnetostrictive material, is highly dependent on the prestress, magnetic field intensity and temperature. Therefore, thermal strain of magnetostrictive material obstructs precision position control of magnetostrictive actuator, magnetostrictive actuator is need of cooling system. In this paper, cooling system using compressed cold air is developed and proper temperature and velocity of compressed cold air is studied by thermal analysis according to applied current.

  • PDF

자기부상을 이용한 초정밀 6자유도 스테이지의 위치제어 (Position Control of a Precise 6-D.O.F Stage with Magnetic Levitation)

  • 이세한;강재관;김용주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.894-897
    • /
    • 2004
  • In this paper, we address a position control scheme for a stage system, which is levitated and driven by electric magnetic actuators. This consists of a levitating object (called platen) with 4 permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion by the vertical and horizontal forces. Dynamic equations of the stage system are derived based on Newton-Euler method and its special Jacobian matrix describing a relation between the Joint velocity and platen velocity is done. There are proposed two control schemes for positioning, which are Cartesian space controller and Joint space controller. The control performance of the Cartesian space controller is better than the Joint space controller in task space trajectory while the Joint space controller is simpler than the Cartesian space controller in controller realization.

  • PDF

자기 흡인력에 의한 비접촉식 SR 형 선형 구동기 (Switched Reluctance Contact-Free Linear Actuator Using Attractive Magnetic Forces)

  • 이상헌;정광석;백윤수
    • 한국정밀공학회지
    • /
    • 제20권10호
    • /
    • pp.47-55
    • /
    • 2003
  • In the development of positioning device for precision manufacturing and measuring, the friction from mechanical contact causes serious decrease of performance. In this study, we studied about variable reluctance type contact-free linear actuator to overcome drawbacks from friction. In the view of electromagnetics, we analyzed and derived theoretical magnetic force equation and designed structure for generating suspension and propulsion force simultaneously. In the view of dynamics, we derived equation of motion and identified the stability of the system. Finally, we verified the feasibility of the proposed system.

리니어모터 스테이지 편요오차 보상장치 제어 (Control for a Yaw Error Compensation System of Linear Motor Stage)

  • 이승현;강민식
    • 한국소음진동공학회논문집
    • /
    • 제18권10호
    • /
    • pp.997-1005
    • /
    • 2008
  • Linear motor stage is a useful device in precision engineering field because of its simple power transmission mechanism and accurate positioning. Even though linear motor stage shows fine positioning accuracy along travel axis, geometric dependent errors which relay on machining and assembling accuracy should be addressed to increase total positioning performances. In this paper, we suggests a cost effective yaw error compensation servo-system which is mounted on platform of the stage and nullify travel position dependent yaw error. This paper also provides a method of designing a sliding mode control which is robust to existing friction disturbance and model uncertainties. The reachability condition of slinding mode control for the yaw error compensating servo-system has been established. From some experimental results by using an experimental set-up, the sliding mode control showed its effective in disturbance rejection and its performance was superior to conventional linear controls.

Modified RHKF Filter for Improved DR/GPS Navigation against Uncertain Model Dynamics

  • Cho, Seong-Yun;Lee, Hyung-Keun
    • ETRI Journal
    • /
    • 제34권3호
    • /
    • pp.379-387
    • /
    • 2012
  • In this paper, an error compensation technique for a dead reckoning (DR) system using a magnetic compass module is proposed. The magnetic compass-based azimuth may include a bias that varies with location due to the surrounding magnetic sources. In this paper, the DR system is integrated with a Global Positioning System (GPS) receiver using a finite impulse response (FIR) filter to reduce errors. This filter can estimate the varying bias more effectively than the conventional Kalman filter, which has an infinite impulse response structure. Moreover, the conventional receding horizon Kalman FIR (RHKF) filter is modified for application in nonlinear systems and to compensate the drawbacks of the RHKF filter. The modified RHKF filter is a novel RHKF filter scheme for nonlinear dynamics. The inverse covariance form of the linearized Kalman filter is combined with a receding horizon FIR strategy. This filter is then combined with an extended Kalman filter to enhance the convergence characteristics of the FIR filter. Also, the receding interval is extended to reduce the computational burden. The performance of the proposed DR/GPS integrated system using the modified RHKF filter is evaluated through simulation.

초정밀 평면 X-Y 스테이지의 최적제어기 설계 (Optimal Design of Controller for Ultra-Precision Plane X-Y Stage)

  • 곽이구;김재열;양동조;고명수;유신;김기태
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.342-347
    • /
    • 2002
  • After the industrial revolution in 20 century, the world are preparing for new revolution that is society with knowledge for a basis such as IT(Information Technology), NT(Nano Technology) and BT(Bio Technology). Recently, NT is applied to various fields that are composed of science, industry, media and semiconductor-micro technology. It has need of IT that is ultra-precision positioning technology with strokes of many hundreds mm and maintenance of nm precision in fields of ultra micro process, ultra precision measurement, photo communication part and photo magnetic memory. Performance test of servo control system that is used ultra-precision positioning system with single plane X-Y stage is performed by simulation with Matlab. Analyzed for previous control algorithm and adapted for modern control theory, dual servo algorithm is developed by minimum order observer, and stability and priority on controller are secured. Through the simulation and experiments on ultra precision positioning, stability and priority on ultra-precision positioning system with single plane X-Y stage and control algorithm are secured by using Matlab with Simulink and ControlDesk made in dSPACE

  • PDF

A modeling of the magnetic levitation stage and its control

  • Nam, Taek-Kun;Kim, Yong-Joo;Jeon, Jeong-Woo;Lee, Ki-Chang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1082-1087
    • /
    • 2003
  • In this paper, we address the development of magnetic levitation positioning system. This planar magnetic levitator employs four permanent magnet liner motors. Each motor generates vertical force for suspension against gravity, as well as horizontal force for drive levitation object called a platen This stage can generate six degrees of freedom motion by the vertical and horizontal force. We derived the mechanical dynamics equation using lagrangian method and used coenergy to express an electromagnetic force. We proposed control algorithm for the position and posture control from its initial value to its desired value using sliding mode control. Some simulation result is provided to verify the effectiveness of the proposed control scheme.

  • PDF

자기부상 스테이지의 모델링과 제어 (Modeling of a Magnetic Levitation Stage and its Control)

  • Yong-Joo, Kim;Jeong-Woo, Jeon;Taek-Kun, Nam
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권6호
    • /
    • pp.906-915
    • /
    • 2004
  • In this paper, we address the development of magnetic levitation positioning system. This planar magnetic levitator employs four permanent magnet liner motors. Each motor generates vertical force for suspension against gravity, as well as horizontal force for driving levitation object called a platen. This stage can generate six degrees of freedom motion by the vertical and horizontal force. We derived the mechanical dynamics equation using Lagrangian method and used coenergy to express an electromagnetic force. We proposed a control algorithm for the position and posture control from its initial value to its desired value using sliding mode control. Some simulation results are provided to verify the effectiveness of the proposed control scheme.