• Title/Summary/Keyword: magnetic parameters

Search Result 1,395, Processing Time 0.025 seconds

A Study on the Flow Behavior of Magnetic Fluids in a Circular Pipe with a Vertical Magnetic Field (수직자장하에서 원관내 자성유체의 거동에 관한 연구)

  • Park, Joung-Woo;Ryu, Shin-Oh;Seo, Lee-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.25-32
    • /
    • 1999
  • In the present paper, we theoretically analyze the flow of magnetic fluids in a circular pipe with a vertical magnetic field and investigate the magnetic response by the external magnetic field. Theoretical study through the governing equation derived by Siliomis is carried out with numerical analysis by the Gauss Elimination Method. Using polar and magnetic effect parameters, theoretical equations and distributions for the velocity, vorticity, internal angular momentum and induced magnetization as the magnetic response are shown. Especially, in the region of strong magnetic field the specific property is appeared by finding a critical magnetic effect parameter for a polar effect parameter.

Macro-Modeling for Magnetic Tunnel Junction (Magnetic Tunnel Junction 의 Macro-Modeling)

  • 홍승균;송상헌;김수원
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.943-946
    • /
    • 2003
  • This paper proposes new SPICE Macro-Model of MTJ(Magnetic Tunnel Junction). This Macro-Model has five I/O terminals, reproduces MR characteristics including hysteresis and behaves correctly to time varying input signals. Furthermore, this Model can be easily modified to various MTJs with different characteristics by simply varying internal parameters.

  • PDF

A Study on Deduction and Characteristic Analysis of Magnetic Equivalent Circuit Parameters of a Rotary-typed Small-scaled LIM for a Railway Transit (철도차량용 선형유도전동기 축소-회전형모델의 자기등가회로 파라미터 도출 및 특성 분석 연구)

  • Park, Chan-Bae;Lee, Hyung-Woo;Lee, Byung-Song
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.4
    • /
    • pp.404-411
    • /
    • 2010
  • Authors conducted a deduction and characteristic calculation of the some parameters using a magnetic equivalent circuit method to verify a basic design result of a rotary-typed small-scaled linear induction motor for a railway transit. In a LIM, it is possible to express the parameters of the magnetic equivalent circuit into a function of the shape of the secondary aluminium plate and the airgap between the LIM primary core and the secondary aluminium plate. It means that the LIM properties can be changed considerably by the shape of the secondary aluminium plate and the airgap between the LIM primary core and the secondary aluminium plate. So, authors analyzed a tendency of changes of the magnetic equivalent circuit parameters and the LIM characteristics by changing of the airgap, the thickness of the secondary aluminium plate and the overhang length and shape of a rotary-typed small-scaled LIM, and accomplished a basic research to develop a real-scaled LIM for a railway transit.

Highly-sensitive Magnetic Sensor using the Amplitude-Modulation (진폭변조를 이용한 고감도 자기센서)

  • 이상훈;남태철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.90-95
    • /
    • 1995
  • This paper describes the highly-sensitive Si magnetic sensor using the amplitude modulation in order to real ice the integrated magnetic sensor which to sensor a weak magnetic field. Generally, the most important two parameters in Hall IC which degrade the ability of magnetic detection are the variation of offset according to the variation of temperature and the noise of amplifiers. In this paper, we use a Hall element and compensator to reduce the offset and the nouse of amplifiers by Using amplititude modulation method.

  • PDF

Electromagnetic Analysis of a Flat-Type Proportional Solenoid by the Reluctance Method

  • Hong, Yeh-Sun;Kwon, Yong-Cheol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.2
    • /
    • pp.46-51
    • /
    • 2006
  • In this study, the electromagnetic characteristic of a flat-type two-dimensional proportional solenoid were analyzed by the magnetic reluctance method. The magnetic equivalent circuit equation for the solenoid was derived by modeling the reluctance of air gaps and magnetic structural components such as pole core, armature and yoke. It was solved iteratively because of the nonlinear magnetization properties of iron parts. The solutions showed good agreement with experimental data. Based on the magnetic equivalent circuit equation, the influence of design parameters on force-to-armature displacement curves was mathematically derived and experimentally verified. In this way, dominant design parameters could be analytically determined.

Effect of Stationary Pole Pieces with Bridges on Electromagnetic and Mechanical Performance of a Coaxial Magnetic Gear

  • Jang, Dae-Kyu;Chang, Jung-Hwan
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.207-211
    • /
    • 2013
  • In a coaxial magnetic gear, bridges connecting separate pole pieces are useful for fabrication and also improve mechanical reliability. However, they have a negative influence on electromagnetic performance parameters such as transmission torque and iron loss. This paper investigates the effect of stationary pole pieces connected by bridges on the electromechanical characteristics. The bridge type and thickness are the main parameters influencing the performance of a coaxial magnetic gear. The inner, center, and outer bridge types each show the best performance in terms of different characteristics. However, for any bridge type, an increase in the bridge thickness reduces the overall electromagnetic performance, except for the torque ripple, and improves the overall mechanical performance, including the deformation, von Mises stress, and natural frequency of the stationary part.

ETCHING CHARACTERISTICS OF MAGNETIC THIN FILMS BY ION BEAM TECHNIQUE

  • Lee, H.C.;Kim, S.D.;Lim, S.H.;Han, S.H.;Kim, H.J.;Kang, I.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.538-542
    • /
    • 1995
  • The etching characteristics of magnetic thin films of permalloy and Fe-based alloys are investigated. The thin films are fabricated by rf magnetron sputtering and the substrates used are silicon and glass. Etching is done by ion beam technique and the main process parameters investigated are beam voltage, beam current and accelerating voltage. The etch rate of the magnetic films is proportional to the beam current, but it is not directly related to the accelerating voltage and beam voltage. The dependence of etch rate on the process parameters can be explained by ion current density. It is found that the ion beam etching is effective in obtaining well-developed micro-patterns on the permalloy and Fe- based magnetic thin films.

  • PDF

Examination of Efficiency Based on Air Gap and Characteristic Impedance Variations for Magnetic Resonance Coupling Wireless Energy Transfer

  • Agcal, Ali;Bekiroglu, Nur;Ozcira, Selin
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.57-61
    • /
    • 2015
  • In this paper wireless power transmission system based on magnetic resonance coupling circuit was carried out. With the research objectives based on the mutual coupling model, mathematical expressions of optimal coupling coefficients are examined. Equivalent circuit parameters are calculated by Maxwell software, and the equivalent circuit was solved by Matlab software. The power transfer efficiency of the system was derived by using the electrical parameters of the equivalent circuit. System efficiency was analyzed depending on the different air gap values for various characteristic impedances. Hence, magnetic resonance coupling involves creating a resonance and transferring the power without radiating electromagnetic waves. As the air gap between the coils increased the coupling between the coils were weakened. The impedance of circuit varied as the air gap changed, affecting the power transfer efficiency.

Relation of CME Speed and Magnetic Helicity in the Source Region during Increasing Phase of Solar Cycle 24

  • Kim, Roksoon;Park, Sunghong;Cho, Kyungsuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.67.1-67.1
    • /
    • 2016
  • We examined the relations between CME speed and properties of magnetic helicity in the source region such as helicity injection rate and total unsigned magnetic flux, which reflect the magnetic energy in the active region. For this, we selected 22 CMEs occurred during the increasing phase of solar cycle 24, which shows extremely low activities and classified them into two groups according to evolution pattern of helicity injection rate. We then compared the relations with those from previous study based on the events in solar cycle 23. As the results, we found several properties as follows: (1) Both of CME speed and helicity parameters have very small values since we only considered increasing phase; (2) among 22 CMEs, only 6 events (27%) are classified as group B, which show sign reversal of helicity injection and they follow behind of appearance of group A events. This fact is well coincide with the trend of solar cycle 23 that only group A events was observed in the first 3 years of the period; (3) as the solar activity is increasing, the CME speed and helicity parameters are also increasing. Based on the observations of solar cycle 23, the helicity parameters was still increasing in spite of decreasing solar activity after maximum period.

  • PDF

A Development of Experimental Model Prediction of Leakage Pressure in MPW (전자기 펄스 용접시 누수압력을 예측하기 위한 실험모델의 개발)

  • Shim, Ji-Yeon;Kim, Ill-Soo;Kim, In-Ju;Kang, Bong-Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.652-657
    • /
    • 2009
  • MPW(Magnetic Pulse Welding) is a technologies for welding of metals by means of repulsive force on account of the interaction between electro-magnetic field of coil and current induced in outer pipe. These MPW is one of the most useful welding process of welding ability of the dissimilar metal in which cylindrical materials, such as pipe, tube. As the quality of a weld joint is strongly influenced by process parameters during the welding process and the success of the welding to evaluated according to the leakage pressure. Generally, the process parameters is magnetic pressure, the gap between outer pipe and inner pipe, and the ratio of thickness to diameter of pipe(D/T) in MPW. Therefore, the goal of this study was to explain the effect of parameters on the weld joint leakage pressure. For these purposes, FFD(Fractional Factorial Design) were used for the experiment. The measured data were analyzed by regression analysis and verification experiments with random condition were conducted to confirm the suggested experimental model.

  • PDF