• Title/Summary/Keyword: magnetic parameters

Search Result 1,395, Processing Time 0.031 seconds

Non-contact critical current measurement using hall probe (Hall probe를 이용한 비접촉 임계전류 측정)

  • Kim, Ho-Sup;Lee, Nam-Jin;Ha, Dong-Woo;Baik, Seung-Kyu;Kim, Tae-Hyung;Ko, Rock-Kil;Ha, Hong-Soo;Oh, Sang-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.7-8
    • /
    • 2009
  • Non-contact critical current measurement apparatus was developed using hall probe which measures the magnetic field distribution across the width of superconducting tape. The hall probe consists of 7 independent hall sensors which lie in a line 600 ${\mu}m$. The difference between maximum and minimum magnetic field in the magnetic filed distribution is a main parameter to determine the critical current. As preliminary research, we calculated the magnetic field intensity at the middle sensor, which is a minimum magnetic field and generated by the circular shielding current modeled by Bean model. We confirmed that there are some parameters that affect on the minimum magnetic field; the distance between superconducting layer and hall sensor, the width of superconducting tape, and the critical current distribution across the width of superconducting tape. Among these parameters, the distance between superconducting layer and hall sensor highly influences on the minimum magnetic field.

  • PDF

Analysis of Radial Air-shear Force on Magnetic Disks for Reducing the Spin-off of Lubricants

  • Kurita, M.;Shimizu, H.;Mizumoto, M.;Ootani, Y.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.281-282
    • /
    • 2002
  • To reduce the spin-off of lubricants on a magnetic disk, which is caused by the radial component of shear force between the disk and air, we analyzed the air-velocity distribution and the air-shear force by three-dimensional large-eddy simulation (LES). This sensitivity analysis, on five design parameters, showed that disk/arm clearance and arm thickness have a greater effect on the mean radial air-shear force than the other parameters. The force on a disk optimized according to the optimum parameters is 12% less than the force on a conventional disk.

  • PDF

A Study on the Arc Characteristics of Axial Magnetic Field Type Electrode for Vacuum interrupter by Desing Parameters (설계변수에 따른 진공인터럽터용 종자계방식 전극의 아크특성에 관한 연구)

  • Kim, S.I.;Park, H.T.;Ahn, H.I.;Seo, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.672-674
    • /
    • 2001
  • Axial magnetic field(AMF) type electrode can increase the interrupting capability of vacuum interrupters. But, this interrupting capability vary with design parameters such as shape of electrode, slits of contact, material of contact and so on. In this paper, shown arc characteristics of unipolar axial magnetic field type electrode for vacuum interrupter by design parameters such as shape of contact slits and diameter of contact. And, confirmed vacuum arc configuration by individual design parameter using high speed camera.

  • PDF

Dynamic Analysis of Transverse type Switched Reluctance Motor considering nolinear magnetic equivalent circuit (비선형 자기회로를 고려한 횡자속형 SRM 동특성해석)

  • Kim, Kyung-Ho;Cho, Yun-Hyun;Jeoung, Yeon-Ho;Kim, Jong-Mu;Kang, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.930-932
    • /
    • 2001
  • This paper is proposed the modeling and computational methods for estimating the steady and dynamic characteristics of a transverse flux type SRM. Prediction of the steady and dynamic characteristics state of a switched reluctance motor (SRM) drive can be quite involved because of complex interdependent influences between motor parameters and excitation. To obtain characteristics parameters of the transverse flux type SRM which is considered the magnetic non-linearity phenomena, the magnetic equivalent parameters of SRM are computed by the finite element method as functions of the input current and angular displacement. Dynamic characteristics of the designed transverse flux type SRM is simulated and estimated by Matlab/simlunk.

  • PDF

Fault Diagnosis of Rotor Bars in a Single Phase Induction Motor Monitoring Electromechanical Parameters (기전연성계 해석을 이용한 단상유도전동기의 회전자 결함진단에 관한 연구)

  • Park, S.J.;Chang, J.H.;Jang, G.H.;Lee, Y.B.;Kim, C.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.802-808
    • /
    • 2000
  • This paper characterizes the electromechanical parameters due to the fault of rotor bars in a squirrel cage induction motor. Simulation is performed to investigate how broken rotor bars have effect on them by solving the time-stepping finite element equation coupled with magnetic field equation, circuit equation and mechanical equation of motion. It shows that the asymmetry of magnetic flux due to the broken rotor bar introduces the beating phenomenon in time domain and the sideband frequencies in frequency spectra, respectively, to the stator current, torque, speed, magnetic force and vibration of a rotor. However, vibration of a rotor would be the most effective monitoring parameters to detect the faults of rotor bars.

  • PDF

THE EFFECT OF PROCESSING PARAMETTERS ON THE MAGNETIC PROPERTIES OF Mn-Zn FERRITE FOR SMPS

  • Suk, J.H.;Jung, K.K.;Shon, H.J.;Hur, W.D.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.610-613
    • /
    • 1995
  • The effect of processing parameters such as milling, additives and sintering atmoshpere on the magnetic properties of Mn-Zn ferrite was investigated. The experiment was followed by general ceramic fabrication process and added additives were $CaCO_{3}$, $SiO_{2}$, $V_{2}O_{5}$, $ZrO_{2}$, and $Nb_{2}O_{5}$. The effects of additives could be divided into three categories which were formation ofliquid phase, substitution in lattice and inducing stress. Core loss smong the magnetic properties was dependent mainly on the additives and also correlated with processing parameters. As a result, an optimum condition of preparing process for a high quality Mn-Zn ferrite was suggested by controlling the correlation of each processing parameters.

  • PDF

Effect of pre-magneto-electro-mechanical loads and initial curvature on the free vibration characteristics of size-dependent beam

  • Arefi, M.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.37-43
    • /
    • 2019
  • This paper studies application of modified couple stress theory and first order shear deformation theory to magneto-electro-mechanical vibration analysis of three-layered size-dependent curved beam. The curved beam is resting on Pasternak's foundation and is subjected to mechanical, magnetic and electrical loads. Size dependency is accounted by employing a small scale parameter based on modified couple stress theory. The magneto-electro-mechanical preloads are accounted in governing equations to obtain natural frequencies in terms of initial magneto-electro-mechanical loads. The analytical approach is applied to investigate the effect of some important parameters such as opening angle, initial electric and magnetic potentials, small scale parameter, and some geometric dimensionless parameters and direct and shear parameters of elastic foundation on the magneto-electro-elastic vibration responses.

Waveform Parameters of the Electric and Magnetic Fields Radiated Form Lightning Return Strokes (낙뢰에 의해 방사된 전계와 자계 파형의 파라미터)

  • Lee, Bok-Hee;Baek, Young-Hwan;Lee, Woo-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.5
    • /
    • pp.57-63
    • /
    • 2006
  • This paper deals with the physical properties and statistical analysis of waveform parameters of electric and magnetic folds radiated from lightning return strokes. The lightning electric and magnetic fields were detected by an plate-type electric field sensor and a loop-type magnetic field sensor respectively, and they were recorded by a data acquisition system having a resolution of 12bits, a sampling rate of 10[MS/s] and recording length of 10[ms]. As a result, a little difference between the parameters of electric and magnetic fields for positive and negative polarities was observed. The rise times of electric and magnetic fields were within the range of less than $13[{\mu}s]$ and the average values for positive and negative polarities were $4.1[{\mu}s]\;and\;4.2[{\mu}s]$, respectively. The average values of the zero-to zero crossing times were $65.2[{\mu}s]\;and\;67.0[{\mu}s]$, and the average depths of the dip to opposite polarity were 38.0[%] and 40.3[%], for positive and negative polarities, respectively.

Development of Prediction Model and Parameter Optimization for Second-Generation Magnetic Abrasive Polishing of Magnesium Alloy (마그네슘 합금강의 제2세대 자기연마에서 표면거칠기 예측모델 개발)

  • Kim, Sang-Oh;Lee, Sung-Ho;Kwak, Jae-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.401-407
    • /
    • 2011
  • The conventional method of magnetic abrasive polishing is not suitable for non-magnetic materials because such polishing is basically possible when magnetic force exists and the magnetic force in non-magnetic materials is very low. The installation of an electromagnet under the working area of a non-magnetic material, which is called second-generation magnetic abrasive polishing in this study, can enhance the magnetic force. Experimental evaluation and optimization of process parameters for polishing magnesium alloy steel was performed by adopting the design of experiments and the response surface method. The results indicated that the intensity of the magnetic force and spindle speed are significant parameters that affect the improvement of surface roughness. A prediction model for the surface roughness of the magnesium alloy steel is developed using the second-order response surface method.

Effect of rolling parameters on soft-magnetic properties during hot rolling of Fe-based soft magnetic alloy powders (Fe계 연자성 합금 분말의 고온 압연시 자성특성에 미치는 압연인자들의 영향)

  • Kim, H.J.;H.Lee, J.;Lee, S.H.;Park, E.S.;Huh, M.Y.;Bae, J.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.266-269
    • /
    • 2009
  • Iron-based soft magnetic materials are widely used as cores, such as transformer transformers, motors, and generators. Reducing losses generated from soft magnetic materials of these applications results in improving energy conversion efficiency. Recently, the new P/M soft magnetic material realized an energy loss of 68 W/kg with a drive magnetic flux of 1 T, at a frequency of 1 kHz, rivaling general-purpose electromagnetic steel sheet in the low frequency range of 200 Hz to 1 kHz. In this research, the effect of rolling parameters on soft magnetic properties of Fe-based powder cores was investigated. The Fe-based soft magnetic plates were produced by the hot powder rolling process after both pure Fe and Fe-4%Si powders were canned, evacuated, and sealed in Cu can. The soft magnetic properties such as energy loss and coercive power were measured by B-H curve analyzer. The soft magnetic properties of rolled sheets were measured under conditions of a magnetic flux density of 1 T at a frequency of 200 kHz. It was found that rolling reduction ratio is the most effective parameter on reducing both energy loss and coercivity because of increasing aspect ratio with reduction ratio. By increasing aspect ratio from 1 to 9 through hot rolling of pure Fe powder, a significant loss reduction of one-third that of SPS sample was achieved.

  • PDF