• Title/Summary/Keyword: magnetic parameters

Search Result 1,395, Processing Time 0.03 seconds

Arthroscopic Excision of Accessory Bone in the Ankle Joint (족관절 부골의 관절경을 이용한 절제술)

  • Choi, Chong-Hyuk;Chung, Jae-Bong;Choi, Woo-Jin;Kim, Hyoung-Sik
    • Journal of the Korean Arthroscopy Society
    • /
    • v.9 no.2
    • /
    • pp.201-205
    • /
    • 2005
  • Purpose: The purpose of this study is to evaluate the result of arthroscopic excision of painful Os subtibiale and Os subfibulare. Materials and Methods: Sixteen patients who had accessory bone in the ankle joint were treated by arthroscopy. Os subtibiale was four cases and os subfibulare twelve. The average follow-up period was 9 months$(range:6{\sim}42months)$. All patients were evaluated clinically with physical examination and radiologically with simple X-ray and for further evaluation, eight with bone scan, three with computed tomography and twelve with magnetic resonance image. We estimated the result of resection with Ogilvie-Harris's criteria. Results: All parameters of subjective and functional evaluation were improved with statistical significance(p<0.05). At final evaluation, eight patients still complained of mild pain and among them, three patients for synovitis, three for tendinitis on MRI and two for incomplete resection. Conclusion: The arthroscopic resection is a very effective method for painful os subtibiale and subfibulare using small incisions and for treatment of associated lesion. The preoperative radiological evaluation is essential and magnetic resornance image is useful for detecting of associated lesion.

  • PDF

Petrochemical and Physical Characteristics of the Cretaceous Pink Granites in the Jinan Area (진안일대에 분포하는 백악기 홍색 화강암류의 암석화학 및 물성특성)

  • 윤현수;홍세선
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.161-177
    • /
    • 2004
  • The Cretaceous pink granites of the finan area, southwestern Ogcheon belt, are adjacently developed in the eastern part (Keg) and western part (Kwg) as stocks, respectively. Keg of rounded shape occur as mainly medium-coarse grained rocks, whereas Kwg of ellipsoidal shape occurs as medium-coarse grained ones with partly porphyritic and fine-grained textures. Miarolitic cavities of them are often seen and can be observed more frequently in Kwg than Keg. Rose and counter fracture diagrams of the two granites show that Keg and Kwg have more potentiality of non-dimension and dimension to non-dimension stones, respectively. Physical properties such as porosity and absorption ratio have 0.25% and 0.65%, and 0.43% and 1.11%, respectively, which could suggest that emissions of gas phase at later magma stages are abundant in Kwg than those of Keg. From the major and trace elements petrochemisoy, they belong to acidic, peraluminous and calc-alkaline rocks, showing that Kwg are later product than Keg of the same granitic parent magma. REE concentrations normalized to chondrite value have trends of gradual and parallel enriched LREE and depleted HREE. Eu negative anomalies of Kwg are far more severe than those of Keg, which suggest that plagioclase fractionation in Kwg was much stronger than that of Keg. In the magnetic susceptibility vs. petrochemical and modal parameters, they all belong to magnetite-series and I-types, and can be classified as weakly-moderately ferromagnetic rocks. And the above relations could suggest that their susceptibility values are more mainly depended on ferromagnetic opaques than ferromagnetic and paramagnetic assemblages (Bt + Ch + Ser + Op).

WZ Cephei: A Dynamically Active W UMa-Type Binary Star

  • Jeong, Jang-Hae;Kim, Chun-Hwey
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.3
    • /
    • pp.163-172
    • /
    • 2011
  • An intensive analysis of 185 timings of WZ Cep, including our new three timings, was made to understand the dynamical picture of this active W UMa-type binary. It was found that the orbital period of the system has complexly varied in two cyclical components superposed on a secularly downward parabola over about 80y. The downward parabola, corresponding to a secular period decrease of $-9.{^d}97{\times}10^{-8}y^{-1}$, is most probably produced by the action of both angular momentum loss (AML) due to magnetic braking and mass-transfer from the massive primary component to the secondary. The period decrease rate of $-6.^{d}72{\times}10^{-8}y^{-1}$ due to AML contributes about 67% to the observed period decrease. The mass flow of about $5.16{\times}10^{-8}M_{\odot}y^{-1}$ from the primary to the secondary results the remaining 33% period decrease. Two cyclical components have an $11.^{y}8$ period with amplitude of $0.^{d}0054$ and a $41.^{y}3$ period with amplitude of $0.^{d}0178$. It is very interesting that there seems to be exactly in a commensurable 7:2 relation between their mean motions. As the possible causes, two rival interpretations (i.e., light-time effects (LTE) by additional bodies and the Applegate model) were considered. In the LTE interpretation, the minimum masses of $0.30M_{\odot}$ for the shorter period and $0.49M_{\odot}$ for the longer one were calculated. Their contributions to the total light were at most within 2%, if they were assumed to be main-sequence stars. If the LTE explanation is true for the WZ Cep system, the 7:2 relation found between their mean motions would be interpreted as a stable 7:2 orbit resonance produced by a long-term gravitational interaction between two tertiary bodies. In the Applegate model interpretation, the deduced model parameters indicate that the mechanism could work only in the primary star for both of the two period modulations, but could not in the secondary. However, we couldn't find any meaningful relation between the light variation and the period variability from the historical light curve data. At present, we prefer the interpretation of the mechanical perturbation from the third and fourth stars as the possible cause of two cycling period changes.

Optimal Design of Multi-Plate Clutch Featuring MR Fluid (MR 유체를 적용한 Multi-Plate Clutch의 최적설계)

  • Park, Jin-Young;Kim, Young-Choon;Oh, Jong-Seok;Jeon, Jae-Hoon;Jeong, Jun-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.77-83
    • /
    • 2020
  • 4WD technology is being actively applied to passenger cars. Therefore, dry multi-plate clutches are used for transfer cases. On the other hand, dry clutches have problems related to large vibrations and poor ride quality. To solve this problem, this paper proposes a multi-plate clutch with an MR fluid. When fastening the multi-plate clutch in the transfer case, the proposed MR clutch was applied to reduce the shock and friction, which is a key component in a four-wheel-drive system. MR multi-plate clutch has a fluid coupling mode and a compression mode. A torque model equation was derived for the optimal design. The analysis was performed using Ansys Maxwell to optimize the design parameters of the multi-plate clutch. Electromagnetic field analysis confirmed the strength of the magnetic field when the number of disks and plates were changed, and the maximum strength of the magnetic field was 0.45 Tesla. By applying this to the torque equation, the spacing between the plates was 2 mm, and the inner and outer diameters of the plates were selected to be 45 mm and 55 mm, respectively. Overall, this paper proposes an optimal design technique to maximize the performance of an MR multi-plate clutch.

Advanced Design of Birdcage RF Coil for Various Absorption Regions at 3T MRI System

  • Lee, Jung-Woo;Choe, Bo-Young;Choi, Chi-Bong;Huh, Soon-Nyoung
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.9 no.1
    • /
    • pp.48-60
    • /
    • 2005
  • Purpose: The purpose of this study was to design and build an optimized birdcage resonator configuration with a low pass filter, which would facilitate the acquisition of high-resolution 3D-image of small animals at 3T MRI system. Methods and Materials: The birdcage resonator with 12-element structures was built, in order to ensure B1 homogeneity over the image volume and maximum filling factor, and hence to maximize the signal to noise ratio (SNR) and resolution of the 3-dimensional images. The diameter and length of each element of a birdcage resonator were as follows: (1) diameter 13 cm, length 22 cm, (2) diameter 15 cm, length 22 cm, (3) diameter 17 cm, length 25 cm. Spin echo pulse sequence and fast spin echo pulse sequence were employed in obtaining MR images. The quality of the manufactured birdcage resonators wes evaluated on the basis of the return loss following matching and tuning process. Results: The experimental MR image of phantoms by the various manufactured birdcage resonators were obtained to compare the SNR in accordance with the size of objects. The size of an object to that of coil was identified by parameters that were estimated from the image of a phantom. First, the diameter of the birdcage resonator was 15cm, and the ratio of the tangerine to the birdcage resonator accounted for approximately 27%. The Q factor was 53.2 and the SNR was 150.7. Second, at the same birdcage resonator, the ratio of the orange was approximately 53%. The SNR and the Q parameter was 212.8 and 91.2, respectively. Conclusion: The present study demonstrated that if birdcage resonators have the same forms, SNR could be different depending on the size of an object, especially when the size of an object to that of coil is approximately 40~80%, the former is bigger than the latter. Therefore, when the size of an object to be observed is smaller than that of coil, the coil should be manufactured in accordance with the size of an object in order to obtain much more excellent images.

  • PDF

Effects of Residual Solvents in the Phase Transition, Transition Enthalpy, and Transition Temperature of Phospholipid Membranes (잔류 유기 용매가 모델 세포 지질막의 상전이, 상전이 엔탈피 및 상전이 온도에 미치는 영향)

  • An, Eun Seol;Choi, Jae Sun;Lee, Dong Kuk
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.2
    • /
    • pp.163-170
    • /
    • 2014
  • Lipid membranes composed of phosphatidylcholine (PC) are used in biophysical study to mimic cellular membranes and interactions between the membrane and chemicals, where organics solvents are used in dissolving lipids or chemicals. Later, solvents are removed from the solution under nitrogen gas at room temperature, followed by the further removal of the solvent at vacuum condition for several hours. In this process, some solvents are easily removed under described conditions above and others are required more severe conditions. In this study, $^{31}P$ solid-state nuclear magnetic resonance (SSNMR) techniques and differential scanning calorimetry (DSC) were used to see any changes in the line shapes of $^{31}P$ NMR spectra of multilamellar vesicles (MLVs) samples of POPC and in the phase change temperature of multilamellar vesicles (MLVs) of DPPC in DSC thermogram with or without any residual solvents. The thermodynamic parameters associated with the solvents did exhibit noticeable changes depending on solvent types. Thus, it is concluded that solvents should be carefully chosen and removed completely and experimental results should also be interpreted with caution particularly for the experiments investigating lipid phase changes and related topics.

Chemical Composition, Microstructure and Magnetic Characteristics of Cerium Substituted Yttrium Iron Garnet Thin Films Prepared by RF Magnetron Sputter Techniques (고주파 마그네트론 스퍼터 기법으로 제조된 Ce:YIG 박막의 화학 조성, 미세구조 및 자기적 특성)

  • 박명범;조남희
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.3
    • /
    • pp.123-132
    • /
    • 2000
  • Cerium substituted YIG thin films were grown by rf magnetron sputter techniques. We investigated the effects of post-deposition heat-treatment as well as various deposition parameters such as substrate materials, substrate temperature. sputter power, and sputter gas types on the crystallinity, chemical composition, microstructure and magnetic characteristics of the films. Post-deposition heat treatment over 750 $\^{C}$ was applied to crystallize as-prepared amorphous films, and a strong tendency of particular crystallographic planes tying parallel to substrate surface was observed for the post-deposition heat-treated films on GGG substrate. The chemical composition of the films exhibited a wide range of chemical stoichiometry depending on the oxygen fraction of sputter gas, and in particular the composition of the film deposited in sputter gas with an oxygen fraction of R = 10% was Ce$\_$0.23/Y$\_$1.30/Fe$\_$3.50/O$\_$12/. With raising the temperature of post-deposition heat-treatment from 900 $\^{C}$ to 1100 $\^{C}$, the surface roughness of the film on GGG substrates increased from about 3 nm to 40 nm, but their coercive force and ferromagnetic resonance line width decreased from 0.477 kA/m to 0.369 kA/m and from 12.5 kA/m to 8.36 kA/m, respectively.

  • PDF

Crystallographic and Magnetic Properties of a Perovskite La1/3Sr2/3FeO2.96 (페롭스카이트 La1/3Sr2/3FeO2.96의 결정학적 및 자기적 성질에 관한 연구)

  • Yoon, Sung-Hyun
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.3
    • /
    • pp.167-171
    • /
    • 2005
  • Detailed aspects of the charge disproportionation (CD) transition for a polycrystalline $La_{1/3}Sr_{2/3}FeO_{2.96}$ were studied with the X-ray diffraction, $M\ddot{o}ssbauer$ spectroscopy, and SQUID magnetometer. The crystal structure was found to be rhombohedral with a space group R/3c. The lattice parameters were $a_R=5.4874\;\AA,\;and\;a_R=60.07^{\circ}$, respectively. $M\ddot{o}ssbauer$ spectra were taken within a wide range of temperature from 4.2 K up to room temperature. In the low temperature region, the spectra were comprised of two superimposed sextets which originated from $Fe^{3+}\;and\;Fe^{5+}$, respectively. This was the antiferromagnetic mixed valence state produced by the charges disproportionated into two different species. In the high temperature region, however, only a singlet from $Fe^{3.6+}$ was observed, indicating that it was a paramagnetic averaged valence state. The CD transition occurred in the temperature range from 175 K to 200 K, in which the two phases coexisted. The origin for the CD transition was explained by the thermally generated fast hopping of electrons. Hysteresis loop showed that there existed a strong antiferromagnetic interaction among magnetic ions. As the temperature increased thru the CD transition temperature, it was very likely that the interaction between $Fe^{3+}\;and\;Fe^{5+}$ was replaced by a more stronger one.

Small scale magNetospheric and Ionospheric Plasma Experiments; SNIPE mission

  • Hwang, Junga;Lee, Jaejin;Shon, Jongdae;Park, Jaeheung;Kwak, Young-Sil;Nam, Uk-Won;Park, Won-Kee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.40.3-41
    • /
    • 2017
  • Korea Astronomy and Space Science Institute The observation of particles and waves using a single satellite inherently suffers from space-time ambiguity. Recently, such ambiguity has often been resolved by multi-satellite observations; however, the inter-satellite distances were generally larger than 100 km. Hence, the ambiguity could be resolved only for large-scale (> 100 km) structures while numerous microscale phenomena have been observed at low altitude satellite orbits. In order to resolve those spatial and temporal variations of the microscale plasma structures on the topside ionosphere, SNIPE mission consisted of four (TBD) nanosatellites (~10 kg) will be launched into a polar orbit at an altitude of 700 km (TBD). Two pairs of satellites will be deployed on orbit and the distances between each satellite will be from 10 to 100 km controlled by a formation flying algorithm. The SNIPE mission is equipped with scientific payloads which can measure the following geophysical parameters: density/temperature of cold ionospheric electrons, energetic (~100 keV) electron flux, and magnetic field vectors. All the payloads will have high temporal resolution (~ 16 Hz (TBD)). This mission is planned to launch in 2020. The SNIPE mission aims to elucidate microscale (100 m-10 km) structures in the topside ionosphere (below altitude of 1,000 km), especially the fine-scale morphology of high-energy electron precipitation, cold plasma density/temperature, field-aligned currents, and electromagnetic waves. Hence, the mission will observe microscale structures of the following phenomena in geospace: high-latitude irregularities, such as polar-cap patches; field-aligned currents in the auroral oval; electro-magnetic ion cyclotron (EMIC) waves; hundreds keV electrons' precipitations, such as electron microbursts; subauroral plasma density troughs; and low-latitude plasma irregularities, such as ionospheric blobs and bubbles. We have developed a 6U nanosatellite bus system as the basic platform for the SNIPE mission. Three basic plasma instruments shall be installed on all of each spacecraft, Particle Detector (PD), Langmuir Probe (LP), and Scientific MAGnetometer (SMAG). In addition we now discuss with NASA and JAXA to collaborate with the other payload opportunities into SNIPE mission.

  • PDF

Differentiation between Glioblastoma and Primary Central Nervous System Lymphoma Using Dynamic Susceptibility Contrast-Enhanced Perfusion MR Imaging: Comparison Study of the Manual versus Semiautomatic Segmentation Method

  • Kim, Ye Eun;Choi, Seung Hong;Lee, Soon Tae;Kim, Tae Min;Park, Chul-Kee;Park, Sung-Hye;Kim, Il Han
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.1
    • /
    • pp.9-19
    • /
    • 2017
  • Background: Normalized cerebral blood volume (nCBV) can be measured using manual or semiautomatic segmentation method. However, the difference in diagnostic performance on brain tumor differentiation between differently measured nCBV has not been evaluated. Purpose: To compare the diagnostic performance of manually obtained nCBV to that of semiautomatically obtained nCBV on glioblastoma (GBM) and primary central nervous system lymphoma (PCNSL) differentiation. Materials and Methods: Histopathologically confirmed forty GBM and eleven PCNSL patients underwent 3T MR imaging with dynamic susceptibility contrast-enhanced perfusion MR imaging before any treatment or biopsy. Based on the contrast-enhanced T1-weighted imaging, the mean nCBV (mCBV) was measured using the manual method (manual mCBV), random regions of interest (ROIs) placement by the observer, or the semiautomatic segmentation method (semiautomatic mCBV). The volume of enhancing portion of the tumor was also measured during semiautomatic segmentation process. T-test, ROC curve analysis, Fisher's exact test and multivariate regression analysis were performed to compare the value and evaluate the diagnostic performance of each parameter. Results: GBM showed a higher enhancing volume (P = 0.0307), a higher manual mCBV (P = 0.018) and a higher semiautomatic mCBV (P = 0.0111) than that of the PCNSL. Semiautomatic mCBV had the highest value (0.815) for the area under the curve (AUC), however, the AUCs of the three parameters were not significantly different from each other. The semiautomatic mCBV was the best independent predictor for the GBM and PCNSL differential diagnosis according to the stepwise multiple regression analysis. Conclusion: We found that the semiautomatic mCBV could be a better predictor than the manual mCBV for the GBM and PCNSL differentiation. We believe that the semiautomatic segmentation method can contribute to the advancement of perfusion based brain tumor evaluation.