• Title/Summary/Keyword: magnetic parameter

Search Result 593, Processing Time 0.024 seconds

Static Properties of Superconductor Journal Bearing Substator for Superconductor Flywheel Energy Storage System (초전도 저널베어링 Substator의 특성평가)

  • Park, B.J.;Jung, S.Y.;Lee, J.P.;Park, B.C.;Jeong, N.H.;Sung, T.H.;Han, Y.H.
    • Progress in Superconductivity
    • /
    • v.10 no.1
    • /
    • pp.55-59
    • /
    • 2008
  • A Superconductor Flywheel Energy Storage System(SFES) mainly consists of a pair of non-contacting High Temperature Superconductor(HTS) bearings that provide very low frictional losses, a composite flywheel with high energy storage density. The HTS bearings, which offer dynamic stability without active control, are the key technology that distinguishes the SFES from other flywheel energy storage devices, and great effort is being put into developing this technology. The Superconductor Journal Bearing(SJB) mainly consists of HTS bulks and a stator, which holds the HTS bulks and also acts as a cold head. Static properties of HTS bearings provide data to solve problems which may occur easily in a running system. Since stiffness to counter vibration is the main parameter in designing an HTS bearing system, we investigate SJB magnetic force through static properties between the Permanent Magnet(PM) and HTS. We measure stiffness in static condition and the results are used to determine the optimal number of HTS bulks for a 100kWh SFES.

  • PDF

Upper critical field and superconducting anisotropy of BaFe2-xRuxAs2 (x=0.48 and 0.75) single crystals

  • Jo, Youn Jung;Eom, Man Jin;Kim, Jun Sung;Kang, W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.31-35
    • /
    • 2014
  • The upper critical field ($H_{c2}$) was determined by applying a magnetic field along the ab plane and c axis for two single crystals of $BaFe_{2-x}Ru_xAs_2$ (x=0.48 and 0.75). The anisotropy of the $H_{c2}(0)$, ${\gamma}(0)=H_{c2}{^{ab}}(0)/H_{c2}{^c}(0)$, was ~1.6 for x=0.48 and ~2.3 for x=0.75. The angle-dependent resistance measured below $T_c$ allowed perfect scaling features based on anisotropic Ginzburg-Landau theory, leading to consistent anisotropy values. Because only one fitting parameter ${\gamma}$ is used in the scaling for each temperature, the validity of the ${\gamma}$ value was compared with that determined from ${\gamma}=H_{c2}{^{ab}}/H_{c2}{^c}$. The ${\gamma}$ obtained at a temperature close to $T_c$ was 3.0 and decreased to 2.0 at low temperatures. Comparing to the anisotropy determined for electron- or hole-doped $BaFe_2As_2$ using the same method, the present results point to consistent anisotropy in Ru-doped $BaFe_2As_2$ with other electron- or hole-doped $BaFe_2As_2$.

Effects of Annealing Temperature on the Properties of Solid Phase Epitaxy YIG Films (열처리온도가 고상에피택시 YIG박막의 특성에 미치는 영향)

  • Jang, Pyung-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.6
    • /
    • pp.221-225
    • /
    • 2003
  • Effects of annealing temperature on the crystalline and magnetic properties of YIG films grown by solid phase epitaxy. The eptiaxy films were made by annealing Fe-Y-O amorphous films in the air at 550-1050 $^{\circ}C$ which were sputtered on GGG (111) substrates in a conventional rf sputtering system. Crystallization temperature of Fe-Y-O amorphous films on GGG (111) substrate was between 600 and 650 $^{\circ}C$ which is much lower than that Fe-Y-O powder prepared by sol-gel method. Excellent epitaxial growth of YIG films could be conformed by the facts that the diffraction intensity of YIG (888) plane was comparable with that of GGG (888) plane and full width at half maximum of YIG (888) rocking curve was smaller than 0.14$^{\circ}$ when films were annealed at 1050 $^{\circ}C$. It could be seen that it is necessary to anneal the films at higher temperature for an excellent epitaxy because lattice parameter of YIG films were smaller and the peak of YIG (888) plane is higher and narrower with increasing annealing temperature. Films annealed at higher temperature shows M-H loop with perpendicular anisotropy which was due to 0.15% lattice mismatch between YIG and GGG.

A Study on Rectangular Planar Monopole Antenna with a Double Sleeve Using Half Cutting (하프 커팅을 이용한 이중 슬리브를 갖는 직사각형 평면 모노폴 안테나에 관한 연구)

  • Kang, Sang-Won;Chang, Tae-Soon;Choe, Gwang-Je
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.257-262
    • /
    • 2017
  • In this paper, we proposed a rectangular planar monopole antenna with a double sleeve that applied to a half-cut and a discontinuous feed structure. A rectangular planar monopole antenna with a double sleeve was cut in half along the magnetic symmetry line, and impedance matching was achieved by a discontinuous structure was applied to a feeder and by adjusting the double sleeve gap. We used the HFSS simulator of ANSYS company to confirm the antenna parameter property, and the antenna size was $21{\times}40mm^2$. In the proposed antenna, the simulation frequency range with VSWR of 2 or less was 2.6GHz to 10.25GHz. The bandwidth was 7.65GHz. The frequency range of the fabricated antenna was 3.3GHz to 9.75GHz, and the bandwidth was 6.45GHz. The measured radiation pattern frequencies were 3.5GHz, 5.5GHz, 7.5GHz, and 9.5GHz. A radiation pattern similar to the dipole antenna pattern was obtained at all frequencies.

Light-weight Signal Processing Method for Detection of Moving Object based on Magnetometer Applications (이동 물체 탐지를 위한 자기센서 응용 신호처리 기법)

  • Kim, Ki-Taae;Kwak, Chul-Hyun;Hong, Sang-Gi;Park, Sang-Jun;Kim, Keon-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.153-162
    • /
    • 2009
  • This paper suggests the novel light-weight signal processing algorithm for wireless sensor network applications which needs low computing complexity and power consumption. Exponential average method (EA) is utilized by real time, to process the magnetometer signal which is analyzed to understand the own physical characteristic in time domain. EA provides the robustness about noise, magnetic drift by temperature and interference, furthermore, causes low memory consumption and computing complexity for embedded processor. Hence, optimal parameter of proposal algorithm is extracted by statistical analysis. Using general and precision magnetometer, detection probability over 90% is obtained which restricted by 5% false alarm rate in simulation and using own developed magnetometer H/W, detection probability over 60~70% is obtained under 1~5% false alarm rate in simulation and experiment.

Statistics on Radiation Field Waveforms Associated with Multiple Intracloud Lightning Discharges

  • Lee, Bok-Hee;Lee, Dong-Moon;Ahn, Chang-Hwan;Kim, Young-Bong
    • Journal of KIEE
    • /
    • v.11 no.1
    • /
    • pp.32-40
    • /
    • 2001
  • This paper presents the detailed statistics on radiation field signatures associated with multiple-intracloud lightning discharges. A transient signal recording system was used to measure the electric and magnetic fields produced by lightning flashes. The measurements were made in th summers of 1995 through 1999, and the location of the observation station was in Inchon on the coast of the Yellow Sea in Korea(37$^{\circ}$25'N, 126$^{\circ}$ 39'E). Most of lightning flashes typically contains between two and five strokes. The individual intracloud stork radiation fields were the bipolar pulse. On the average, the ratio of the peak of the second stroke to the first stroke peak was 75.1$\pm$40.1% for the negative, and a fraction of the subsequent stroke peaks were higher than the first stroke peak. The greater the number of the subsequent stroke order, less time separations between strokes were produced. The mean of the depth of the dip was 81.2$\pm$27.9% for the positive polarity and 75.9$\pm$24.4% for the negative. The depth of the dip increased for the positive bipolar pulses and decreased for the negative as the number of the stroke order increased.

  • PDF

A Non-Linear Characteristics Modeling of High Frequency FL Lamp by Experimental Values (실험식을 이용한 고주파 형광램프의 비선형특성 모델링)

  • 함중걸;백수현
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.2
    • /
    • pp.51-55
    • /
    • 1997
  • The high frequency fluorescnet lighting systems are widely used because of their high luminous efficacy. However, the performance of the fluorescnet lamp at high frequency reveals significant changes depending upon operating frequency, lamp shape, lamp voltage and current while adapting either an electronic or an magnetic ballast. Therefore the matching between the fluorescent lamp and the ballast is the major concern in designing a lighting system. In this paper, high frequency characteristics of the FHF32W lamp is measured in a range of frequencies from 12kHz to 50kHz. And we presented a model of a fluorescnet lamp with non-linear impedance depending on the lamp current. Finally, after identifying the operating condition under negative imped¬ance behavior as lamp current changing, we proposed a method of choosing the optimal parameter of a high frequency fluorescnet lamp and the result is analyzed.

  • PDF

Diffusion tensor imaging of the C1-C3 dorsal root ganglia and greater occipital nerve for cervicogenic headache

  • Wang, Lang;Shen, Jiang;Das, Sushant;Yang, Hanfeng
    • The Korean Journal of Pain
    • /
    • v.33 no.3
    • /
    • pp.275-283
    • /
    • 2020
  • Background: Previous studies showed neurography and tractography of the greater occipital nerve (GON). The purpose of this study was determining diffusion tensor imaging (DTI) parameters of bilateral GONs and dorsal root ganglia (DRG) in unilateral cervicogenic headache as well as the grading value of DTI for severe headache. The correlation between DTI parameters and clinical characteristics was evaluated. Methods: The fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values in bilateral GONs and cervical DRG (C2 and C3) were measured. Grading values for headache severity was calculated using a receiver operating characteristics curve. The correlation was analyzed with Pearson's coefficient. Results: The FA values of the symptomatic side of GON and cervical DRG (C2 and C3) were significantly lower than that of the asymptomatic side (all the P < 0.001), while the ADC values were significantly higher (P = 0.003, P < 0.001, and P = 0.003, respectively). The FA value of 0.205 in C2 DRG was considered the grading parameter for headache severity with sensitivity of 0.743 and specificity of 0.999 (P < 0.001). A negative correlation and a positive correlation between the FA and ADC value of the GON and headache index (HI; r = -0.420, P = 0.037 and r = 0.531, P = 0.006, respectively) was found. Conclusions: DTI parameters in the symptomatic side of the C2 and C3 DRG and GON were significantly changed. The FA value of the C2 DRG can grade headache severity. DTI parameters of the GON significantly correlated with HI.

Microwave Propagation in the Plasma for 28 GHz Superconducting ECRIS (28 GHz 초전도 ECRIS 플라즈마에서의 마이크로파 전파)

  • Wang, S.J.;Won, M.S.;Lee, B.S.;Kim, S.H.;Kwak, J.G.;Jeong, S.H.;Kim, S.K.;An, C.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.6
    • /
    • pp.467-474
    • /
    • 2010
  • Packet propagation and absorption for the 28 GHz superconducting ECRIS under developing by KBSI Pusan center is analyzed with limited parameter range. The microwave power generated by 28 GHz gyrotron is axially injected to the plasma cavity through waveguide system. According to the analytical ray tracing calculation, the wave packet launched quasi-longitudinally at a high magnetic field side changes its direction from outward to inward as it is approaching resonance layer. Therefore, initially diverging wave does not likely hit a conducting surface before absorbing by electron cyclotron resonance. Also, absorption by plasma with moderate electron density is so strong that reflection by an extraction plate may not be expected.

Plasma Rotation in Plasma Centrifuge with an Annular Gap (동심 원통형 용기내에서의 플라즈마 회전)

  • Hue Yeon Lee;Sang Hee Hong
    • Nuclear Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.78-85
    • /
    • 1982
  • The steady-state rotation of plasma centrifuge is theoretically analyzed to understand the physics of rotating plasmas and its feasibility for isotope separation. The centrifuge system under consideration consists of an annular gap between coaxial cylindrical anode and cathode in the presence of an externally-applied axial magnetic field. A problem for coupled partial differential equations describing centrifuge fields is formulated on the basis of the magnetohydrodynamic equations. Two-dimensional solutions are found analytically in the form of Fourier-Bessel series. The current density and velocity distributions are discussed in terms of the Hartmann number and the geometrical parameter of the system. At typical conditions, rotational speeds of the plasma up to the order of 10$^4$m/sec are achievable, and increase either with increasing Hartmann number, or with increasing ratio of the axial length to the inner radius of the cylinder. In view of much higher speeds of rotation which can be achieved in plasma centrifuge, it is expected that its efficiency is superior to mechanically driven gas centrifuges.

  • PDF