• Title/Summary/Keyword: magnetic parameter

Search Result 593, Processing Time 0.03 seconds

Vibration analysis of double-bonded micro sandwich cylindrical shells under multi-physical loadings

  • Yazdani, Raziye;Mohammadimehr, Mehdi;Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.93-109
    • /
    • 2019
  • In the present study, vibration analysis of double bonded micro sandwich cylindrical shells with saturated porous core and carbon/boron nitride nanotubes (CNT/BNNT) reinforced composite face sheets under multi-physical loadings based on Cooper-Naghdi theory is investigated. The material properties of the micro structure are assumed to be temperature dependent, and each of the micro-tubes is placed on the Pasternak elastic foundations, and mechanical, moisture, thermal, electrical, and magnetic forces are effective on the structural behavior. The distributions of porous materials in three distributions such as non-linear non-symmetric, nonlinear-symmetric, and uniform are considered. The relationship including electro-magneto-hydro-thermo-mechanical loadings based on modified couple stress theory is obtained and moreover the governing equations of motion using the energy method and the Hamilton's principle are derived. Also, Navier's type solution is also used to solve the governing equations of motion. The effects of various parameters such as material length scale parameter, temperature change, various distributions of nanotube, volume fraction of nanotubes, porosity and Skempton coefficients, and geometric parameters on the natural frequency of double bonded micro sandwich cylindrical shells are investigated. Increasing the porosity and the Skempton coefficients of the core in micro sandwich cylindrical shell lead to increase the natural frequency of the structure. Cylindrical shells and porous materials in the industry of filters and separators, heat exchangers and coolers are widely used and are generally accepted today.

Ultrasonic waves in a single walled armchair carbon nanotube resting on nonlinear foundation subjected to thermal and in plane magnetic fields

  • Selvamani, Rajendran;Jayan, M. Mahaveer Sree;Ebrahimi, Farzad
    • Coupled systems mechanics
    • /
    • v.10 no.1
    • /
    • pp.39-60
    • /
    • 2021
  • The present paper is concerned with the study of nonlinear ultrasonic waves in a magneto thermo (MT) elastic armchair single-walled carbon nanotube (ASWCNT) resting on polymer matrix. The analytical formulation is developed based on Eringen's nonlocal elasticity theory to account small scale effect. After developing the formal solution of the mathematical model consisting of partial differential equations, the frequency equations have been analyzed numerically by using the nonlinear foundations supported by Winkler-Pasternak model. The solution is obtained by ultrasonic wave dispersion relations. Parametric work is carried out to scrutinize the influence of the non local scaling, magneto-mechanical loadings, foundation parameters, various boundary condition and length on the dimensionless frequency of nanotube. It is noticed that the boundary conditions, nonlocal parameter, and tube geometrical parameters have significant effects on dimensionless frequency of nano tubes. The results presented in this study can provide mechanism for the study and design of the nano devices like component of nano oscillators, micro wave absorbing, nano-electron technology and nano-electro- magneto-mechanical systems (NEMMS) that make use of the wave propagation properties of armchair single-walled carbon nanotubes embedded on polymer matrix.

Development and Applications of an Optic Oxygen Sensor Datalogger for in situ Dissolved Oxygen Monitoring in Coastal Water (연안 용존산소 현장 모니터링용 산소광센서 데이터로거 개발 및 적용)

  • Jae Seong, Lee;Hyunmin Baek
    • Ocean and Polar Research
    • /
    • v.45 no.2
    • /
    • pp.33-42
    • /
    • 2023
  • Dissolved oxygen (DO) is a crucial parameter for assessing environmental conditions in aquatic ecosystems. However, commercial in situ dataloggers for oxygen optodes can be relatively expensive and limited in their specifications. In this paper, we present a novel design for a DO datalogger system based on the control boards family with RP2040 MCU chipset. Our design includes two types of dataloggers: a simple logging system and a programmable system for sampling rates via magnetic switches underwater for divers. We provide detailed descriptions of the system, including the MicroPython source code and drawings to aid in construction. We also discuss the various applications of our DO datalogger system in monitoring dissolved oxygen concentration in coastal waters and assessing the benthic metabolism of aquatic ecosystems. Our DO datalogger system provides an affordable and flexible option for researchers to accurately monitor DO concentrations in aquatic environments, and thereby improve our understanding of these complex ecosystems.

Numerical analysis about current non-uniformity in superconducting CICC (cable-in-conduit conductor) joint (초전도 관내연선도체 접합부에서의 전류 불균일에 대한 수치적 분석)

  • Lee, Sang-Il;Jeong, Sang-Kwon;Choi, Sung-Min;Park, Kap-Rai
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.41-45
    • /
    • 2007
  • This paper presents transport current non-uniformity in a joint for superconducting multistage cable-in-conduit conductor (CICC) and relaxation in the CICC. The joint is considered to have a current loop linked to an external magnetic field so that it becomes an emf voltage source. It is numerically analyzed using an electrical transmission line model. The inductive current in a resistive joint is compared to that of a non-resistive joint when the ramping field is applied vertically to the joints. Regarding the parameter values of the model. a full scale $Nb_3Sn$ CICC and a strand-to-strand (STS) joint for the toroidal field magnet of the KSTAR (Korea Superconducting Tokamak Advanced Research) device are referenced to. It is found that the resistive joint prevents the current from rising too much and enhances decaying the current when the ramping stops. The 'flattop' current is found to be proportional to the ramp rate of the field (dB/dt). The relaxation length, which is defined as the length within which the maximum induced current falls by 1/e. is found to saturate within 0.27m.

Vibration based energy harvesting performance of magneto-electro-elastic beams reinforced with carbon nanotubes

  • Arjun Siddharth Mangalasseri;Vinyas Mahesh;Sriram Mukunda;Vishwas Mahesh;Sathiskumar A Ponnusami;Dineshkumar Harursampath;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.14 no.1
    • /
    • pp.27-43
    • /
    • 2023
  • This article investigates the energy harvesting characteristics of a magneto-electro-elastic (MEE) cantilever beam reinforced with carbon nanotubes (CNT) under transverse vibration. To this end, the well-known lumped parameter model is used to represent the coupled multiphysics problem mathematically. The proposed system consists of the MEE-CNT layer on top and an inactive substrate layer at the bottom. The substrate is considered to be made of either an isotropic or composite material. Basic laws such as Gauss's Law, Newton's Law and Faraday's Law are used to arrive at the governing equations. Surface electrodes across the beam are used to harvest the electric potential produced, together with a wound coil, for the generated magnetic potential. The influence of various distributions of the CNT and its volume fraction, substrate material, length-to-thickness ratio, and thickness ratio of substrate to MEE layer on the energy harvesting behaviour is thoroughly discussed. Further, the effect of external resistances and changes in substrate material on the response is analysed and reported. The article aims to explore smart material-based energy harvesting systems, focusing on their behaviour when reinforced with carbon nanotubes. The results of this study may lead to an improved understanding of the design and analysis of CNT-based smart structures.

Asymmetric Cosmic Ray Modulation of Forbush Decreases Associated with the Propagation Direction of Interplanetary Coronal Mass Ejection

  • Jongil Jung;Suyeon Oh;Yu Yi;Jongdae Sohn
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.1
    • /
    • pp.117-124
    • /
    • 2023
  • A Forbush decrease (FD) is a depression of cosmic ray (CR) intensity observed by ground-based neutron monitors (NMs). The CR intensity is thought to be modulated by the heliospheric magnetic structures including the interplanetary coronal mass ejection (ICME) surrounding the Earth. The different magnitude of the decreasing in intensity at each NM was explained only by the geomagnetic cutoff rigidity of the NM station. However, sometimes NMs of almost the same cutoff rigidity in northern and southern hemispheres observe the asymmetric intensity depression magnitudes of FD events. Thus, in this study we intend to see the effects on CR intensity modulation of FD event recorded at different NMs due to different ICME propagation directions as an additional parameter in the model explaining the CR modulation. Fortunately, since 2006 the coronagraphs of twin spacecraft of the STEREO mission allow us to infer the propagation direction of ICME associated with the FD event in 3-dimension with respect to the Earth. We suggest the hypothesis that the asymmetric CR modulations of FD events are determined by the propagation directions of the associated ICMEs.

THE RELATIONSHIP BETWEEN PARTICLE INJECTION RATE OBSERVED AT GEOSYNCHRONOUS ORBIT AND DST INDEX DURING GEOMAGNETIC STORMS (자기폭풍 기간 중 정지궤도 공간에서의 입자 유입률과 Dst 지수 사이의 상관관계)

  • 문가희;안병호
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.2
    • /
    • pp.109-122
    • /
    • 2003
  • To examine the causal relationship between geomagnetic storm and substorm, we investigate the correlation between dispersionless particle injection rate of proton flux observed from geosynchronous satellites, which is known to be a typical indicator of the substorm expansion activity, and Dst index during magnetic storms. We utilize geomagnetic storms occurred during the period of 1996 ~ 2000 and categorize them into three classes in terms of the minimum value of the Dst index ($Dst_{min}$); intense ($-200nT{$\leq$}Dst_{min}{$\leq$}-100nT$), moderate($-100nT{\leq}Dst_{min}{\leq}-50nT$), and small ($-50nT{\leq}Dst_{min}{\leq}-30nT$) -30nT)storms. We use the proton flux of the energy range from 50 keV to 670 keV, the major constituents of the ring current particles, observed from the LANL geosynchronous satellites located within the local time sector from 18:00 MLT to 04:00 MLT. We also examine the flux ratio ($f_{max}/f_{ave}$) to estimate particle energy injection rate into the inner magnetosphere, with $f_{ave}$ and $f_{max}$ being the flux levels during quiet and onset levels, respectively. The total energy injection rate into the inner magnetosphere can not be estimated from particle measurements by one or two satellites. However, the total energy injection rate should be at least proportional to the flux ratio and the injection frequency. Thus we propose a quantity, “total energy injection parameter (TEIP)”, defined by the product of the flux ratio and the injection frequency as an indicator of the injected energy into the inner magnetosphere. To investigate the phase dependence of the substorm contribution to the development of magnetic storm, we examine the correlations during the two intervals, main and recovery phase of storm separately. Several interesting tendencies are noted particularly during the main phase of storm. First, the average particle injection frequency tends to increase with the storm size with the correlation coefficient being 0.83. Second, the flux ratio ($f_{max}/f_{ave}$) tends to be higher during large storms. The correlation coefficient between $Dst_{min}$ and the flux ratio is generally high, for example, 0.74 for the 75~113 keV energy channel. Third, it is also worth mentioning that there is a high correlation between the TEIP and $Dst_{min}$ with the highest coefficient (0.80) being recorded for the energy channel of 75~113 keV, the typical particle energies of the ring current belt. Fourth, the particle injection during the recovery phase tends to make the storms longer. It is particularly the case for intense storms. These characteristics observed during the main phase of the magnetic storm indicate that substorm expansion activity is closely associated with the development of mangetic storm.

A Method to Quantify Breast MRI for Predicting Tumor Invasion in Patients with Preoperative Biopsy- Proven Ductal Carcinoma in Situ (DCIS) (유방 자기공명영상법을 이용한 수술 전 관상피내암으로 진단된 환자의 침윤성 유방암을 예측하는 정량적 분석법)

  • Ko, Myung-Su;Kim, Sung Hun;Kang, Bong Joo;Choi, Byung Gil;Song, Byung Joo;Cha, Eun Suk;Kiraly, Atilla Peter;Kim, In Seong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.2
    • /
    • pp.73-82
    • /
    • 2013
  • Purpose : To determine the quantitative parameters of breast MRI that predict tumor invasion in biopsy-proven DCIS. Materials and Methods: From January 2009 to March 2010, 42 MRI examinations of 41 patients with biopsy-proven DCIS were included. The quantitative parameters, which include the initial percentage enhancement ($E_1$), peak percentage enhancement ($E_{peak}$), time to peak enhancement (TTP), signal enhancement ratio (SER), arterial enhancement fraction (AEF), apparent diffusion coefficient (ADC) value, long diameter and the volume of the lesion, were calculated as parameters that might predict invasion. Univariate and multivariate analyses were used to identify the parameters associated with invasion. Results: Out of 42 lesions, 23 lesions were confirmed to be invasive ductal carcinoma (IDC) and 19 lesions were confirmed to be pure DCIS. Tumor size (p = 0.003; $6.5{\pm}3.2$ cm vs. $3.6{\pm}2.6$ cm, respectively) and SER (p = 0.036; $1.1{\pm}0.3$ vs. $0.9{\pm}0.3$, respectively) showed statistically significant high in IDC. In contrast, E1, Epeak, TTP, ADC, AEF and volume of the lesion were not statistically significant. Tumor size and SER had statistically significant associations with invasion, with an odds ratio of 1.04 and 22.93, respectively. Conclusion: Of quantitative parameters analyzed, SER and the long diameter of the lesion could be specific parameter for predicting invasion in the biopsy-proven DCIS.

Functional MRI of Visual cortex in the Patients with Occipital Lobe Ischemia (후두엽의 허혈성 뇌졸중 환자에서 시각피질의 기능적 자기공명영상)

  • 이영준;정태섭;윤영수;한승한;조영재;배준호
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.2
    • /
    • pp.173-178
    • /
    • 1999
  • Purpose : To evaluate the usefulness of functional MRI (fMRI) of visual cortex in patients with ischemic infarction in the occipital lobe. Materials and Methods : Four patients with the symptoms and signs of visual cortical ischemia were included. Functional MRI was performed by 2D-FLASH technique with the parameter of 90/56msec TR/TE, $40^{\circ}$ flip angle, $240{\times}240{\;}FOV,{\;}64{\times}128$ matrix number, 8.32 seconds acquisition time, 8mm slice thickness. An axial slice including both visual cortices was selected and alternative activation and resting of the visual cortex was performed using red color photostimulator. all patients undertook visual field test, and vascular abnormality was examined by MRA (n=4) and DSA (n=2). fMRI results were compared with the results of a visual field test, conventional MRI and cerebral angiography. Results : On fMRI, decreased activity of the visual cortex was found in the occipital lobe corresponding to stenosis of the posterior cerebral artery or its branch noted on angiogram. However, 2 of 4 patients showed no abnormal findings on conventional MRI. Visual field defect was noted in 3 patients, one and of whom showed no abnormality on conventional MRI and diffusion-weighted image, but revealed decreased activity in the corresponding visual cortex on fMRI. Conclusion : fMRI may be a sensitive method for detection of the status of decreased blood flow or vascular reserve which other methods can not.

  • PDF

In-Vivo Heat Transfer Measurement using Proton Resonance Frequency Method of Magnetic Resonance Imaging (자기 공명영상 시스템의 수소원자 공명 주파수법을 이용한 생체 내 열 전달 관찰)

  • 조지연;조종운;이현용;신운재;은충기;문치웅
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.3
    • /
    • pp.172-180
    • /
    • 2003
  • The purpose of this study is to observe the heat transfer process in in-vivo human muscle based on Proton Resonance Frequency(PRF) method in Magnetic Resonance Imaging(MRI). MRI was obtained to measure the temperature variation according to the heat transfer in phantom and in-vivo human calf muscle. A phantom(2% agarose gel) was used in this experiment. MR temperature measurement was compared with the direct temperature measurement using a T-type thermocouple. After heating agarose gel to more than 5$0^{\circ}C$ in boiling hot water, raw data were acquired every 3 minutes during one hour cooling period for a phantom case. For human study heat was forced to deliver into volunteer's calf muscle using hot pack. Reference data were once acquired before a hot pack emits heat and raw data were acquired every 2 minutes during 30minutes. Acquired raw data were reconstructed to phase-difference images with reference image to observe the temperature change. Phase-difference of the phantom was linearly proportional to the temperature change in the range of 34.2$^{\circ}C$ and 50.2$^{\circ}C$. Temperature resolution was 0.0457 radian /$^{\circ}C$(0.0038 ppm/$^{\circ}C$) in phantom case. In vivo-case, mean phase-difference in near region from the hot pack is smaller than that in far region. Different temperature distribution was observed in proportion to a distance from heat source.