• Title/Summary/Keyword: magnetic microscope

Search Result 176, Processing Time 0.034 seconds

Finite Element Analysis for Electron Optical System of a Field Emission SEM (전계방출 주사전자 현미경의 전자광학계 유한요소해석)

  • Park, Keun;Park, Man-Jin;Kim, Dong-Hwan;Jang, Dong-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1557-1563
    • /
    • 2006
  • A scanning electron microscope (SEM) is well known as a measurement and analysis equipment in nano technology, being widely used as a crucial one in measuring objects or analyzing chemical components. It is equipped with an electron optical system that consists of an electron beam source, electromagnetic lenses, and a detector. The present work concerns numerical analysis for the electron optical system so as to facilitate design of each component. Through the numerical analysis, we investigate trajectories of electron beams emitted from a nano-scale field emission tip, and compare the result with that of experimental observations. Effects of various components such as electromagnetic lenses and an aperture are also discussed.

Fabrication and Characterization of $High-T_c$ Superconducting Single Channel Flux Flow Transistor using the Atomic Force Microscope TiO Cantilever Tip (원자힘 주사현미경 TiO 탐침을 이용한 고온 초전도 단일채널 자속 흐름 트랜지스터의 제작 및 특성 해석)

  • Ko, Seok-Cheol;Kang, Hyeong-Gon;Lim, Sung-Hun;Lee, Jong-Hwa;Lee, Hae-Sung;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.101-104
    • /
    • 2004
  • We have fabricated a channel of superconducting flux flow transistor(SFFT) using the voltage-biased atomic force microscope(AFM) TiO tip and performed numerical simulations for the SFFT controlled by the magnetic field with a control current. The critical current density in a channel of the fabricated SFFT was decreased with the applied current by a control line. By comparing the measured with theoretical results, we showed a possibility of fabrication of an SFFT with a nano-channel using AFM anodization process technique.

  • PDF

Magnetic Domain Structures with Substrate Temperatures in Co-22%Cr Alloy Thin Films (자가정렬형 나노구조 Co-22%Cr합금 박막의 기판온도에 따른 미세 도메인 구호)

  • 송오성
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.5
    • /
    • pp.184-188
    • /
    • 2001
  • Using a DC-sputter and changing the substrate temperature to room temperature and 200$\^{C}$, we manufactured each Co-22%Cr alloy thin-films, which has a uniform micro-structure at room temperature, and a fine self-organized nato structure (SONS) at the inside of the grain at the elevated temperature. We also investigated the microstructure and domain structure using a transmission electron microscope (TEM) and a magnetic force microscope (MFM). We managed to corrode selectively Co-enriched phase, then investigate the microstructure using a TEM. We found that it has a uniform composition when it is manufactured at room temperature, but, we found that it has a unique microstructure, which has a plate-like fine Co-enriched phase, with the formation of SONS at the inside of the grain at the elevated temperature. In MFM characterization, we found maze-type domains at the period of 5000 when the substrate temperature maintains at room temperature. We define that the maze-type domain has a disadvantage at the high density recording because it generates noises easily as the exchange coupling energy between the grains is big. On the other hand, there is only a fine domain structure at the period of 500 when the substrate temperature maintains at 200 $\^{C}$. We define that the fine domain structure has an advantage at the high density magnetic recording because it has thermal stability due to small exchange coupling energy.

  • PDF

Electrical and Magnetic Properties of Magnetite Powder during a Verwey Transition (Verwey 전이와 마그네타이트의 전기적 및 자기적 특성)

  • Yoon, Sunghyun
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1302-1307
    • /
    • 2018
  • The crystallographic, electrical and magnetic behaviors of magnetite powder in the vicinity of its Verwey transition were investigated in this study. Magnetite was prepared by synthesizing a nanoparticle precursor and then annealing it at $800^{\circ}C$ for 1 h under a dynamic vacuum. Crystallographic and morphology analyses were done by using scanning electron microscope (SEM) and X-ray diffraction (XRD). The electrical and the magnetic properties were examined by using $M{\ddot{o}}ssbauer$ spectroscopy, vibrating sample magnetometer (VSM) and resistivity measurement. Both the magnetic moment and the resistivity showed discontinuous changes at the Verwey transition temperature ($T_V$). The temperature dependence of magnetic anisotropy constant showed a monotonic decrease with increasing temperature, with slight dip near $T_V$. $M{\ddot{o}}ssbauer$ spectra showed the superposition of two sextets, one from the tetrahedral (A) and the other from the octahedral (B) sites. The results revealed that identical charge states existed in the B site at temperatures both above and below $T_V$. A coordination crossover resulted in a transition from an inverse to a normal spinel at or close to $T_V$.

The Measurement Errors of Elastic Modulus and Hardness due to the Different Indentation Speed (압입속도의 변화에 따른 탄성계수와 경도의 오차 연구)

  • Lee, Kyu-Young;Lee, Chan-Bin;Kim, Soo-In;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.5
    • /
    • pp.360-364
    • /
    • 2010
  • Most research groups used two analysis methods (spectroscopy and nanotribology) to measure the mechanical properties of nano-materials: NMR (Nuclear Magnetic Resonance), IR (Infrared Spectroscopy), Raman Spectroscopy as the spectroscopy method and AFM (Atomic Force MicroScope), EFM (Electrostatic Force Microscope), KFM (Kelvin Force Microscope), Nanoindenter as the nanotribological one. Among these, the nano-indentation technique particularly has been recognized as a powerful method to measure the elastic modulus and the hardness. However, this technique are prone to considerable measurement errors with pressure conditions during measurement. In this paper, we measured the change of elastic modulus and hardness of an Al single crystal with the change of load, hold, and unload time, respectively. We found that elastic modulus and hardness significantly depend on load, hold, and unload time, etc. As the indent time was shortened, the elastic modulus value decreased while the hardness value increased. In addition, we found that elastic modulus value was more sensitive to indent load, hold, and unload time than the hardness value. We speculate that measurement errors of the elastic modulus and the hardness originate from the residual stress during indenting test. From our results, the elastic modulus was more susceptible to the residual stress than the hardness. Thus, we find that the residual stress should be controlled for the minimum measurement errors during the indenting test.

Characterization of Co-Ni Based Ferromagnetic Shape Memory Alloy (자성 Co-Ni 계 형상기억합금의 특성)

  • Han, Ji-Won;Park, Sung Bum
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.8-13
    • /
    • 2015
  • The magnetic shape memory alloys have recently received a lot of attention due to the considerable progress achieved in understanding the particular importance and the development of the factors. Among these alloys, the ferromagnetic Co-Ni- alloys have been concerned specially because of the thermoelastic character of the fcc (g) - bct (a) martensitic transformation which exhibits under the action of the temperature (shape memory effect), the stress (superelasticity) and the magnetic field (magnetoelasticity). The morphological, the crystallographical, and the thermal characteristics of thermally induced martensite in Co-35.3Ni-11.3Al(wt.%) and Co-28.1Ni-47.4Fe-3.3Ti (wt.%) alloy have been investigated by the scanning electron microscope (SEM), the X-ray Diffraction (XRD), and the differential scanning calorimeter (DSC).

MAGNETIC FIELD DEPENDENCE OF MAGNETIZATION REVERSAL BEHAVIOR IN Co/Pt MULTILAYERS.

  • Cho, Yoon-Chul;Choe, Sug-Bong;Shin, Sung-Chul
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.279-286
    • /
    • 2000
  • Magnetic field dependence of magnetization reversal in Co/Pt multilayers has been quantitatively investigated. Serial samples of Co/Pt multilayers have been prepared by dc-magnetron sputtering under various Ar pressure. Magnetization reversal was monitored by magnetization viscosity measurement and direct domain observation using a magneto-optical microscope system, and the wall-motion speed and the nucleation rate R were determined using a domain reversal model based on time-resolved domain reversal patterns. Both and R were found to be exponentially dependent on the reversing applied field. From the exponential dependencies, the activation volumes of the wall motion and nucleation could be determined based on a thermally activated relaxation model, and the wall-motion activation volume was revealed to be slightly larger than the nucleation activation volume.

  • PDF

금속 자성의 기본 이론

  • 민병일
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.4
    • /
    • pp.309-314
    • /
    • 1995
  • 최근 새로운 과학기술의 발달로 자기다층박막등 자기 분야의 신소재를 비롯하여 XMCD( X-ray Magnetic Circular Dichroism), MFM(Magnetic Force Microscope)등 자성분석방법등이 개발되고 있고, 정보화 사회의 출현과 함께 자기기록에 대한 중요성이 증대되면서 자기 물성에 대한 연구는 새로운 르네상스 시기를 맞았다고 할 수 있다. 자기 현상의 근본 원리 규명에 대한 연구는 재료과학 또는 고체물성 연구과제중 가장 오랜 역사를 지닌 문제중의 하나라 할 수 있다. 자연계에 존재하는 자석은 기원전 7세기경부터 인간에게 알려진 것으로 기록되어 있고 그후 오랫동안 나침반으로 사용되어 왔다. 하지만 자석의 원리에 대한 규명은 양자역학이 생기고 전자의 스핀개념이 도입된 20세기 초에서야 시작되어졌다. 그나마 현재까지도 자기현상의 아주 기본적인 개념만이 알려진 상황이고, 금속, 부도체 또는 화합물등에서 일어나는 다양한 자기 현상들을 일관성 있게 설명하는 완전한 이론의 정립은 아직도 요원한 문제라 할 수 있다.

  • PDF

The Fabrication of Micro Actuator Used Micro Electro-Magnet and Magnetostrictive Thin Film (마이크로 전자석과 자기변형박막을 이용한 마이크로 엑추에이터의 제작)

  • Seo, Jee-Hoon;Yang, Sang-Sik;Jeong, Jong-Man;Lim, Sang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3328-3330
    • /
    • 1999
  • In this paper, the fabrication of a micro actuator with a micro electromagnet and an actuator diaphragm is presented. The micro electromagnet consists of a magnetic core and a micro inductive planar coil. The actuator diaphragm is the p+ silicon diaphragm on both sides of which magnetostrictive materials are deposited by sputtering. The micro electromagnet is fabricated by sputtering, evaporating, etching and electroplating. The magnetic flux density of the micro electromagnet is measured by using the gauss meter. The deflection of the actuator diaphragm is measured by using the laser vibrometer and optic microscope.

  • PDF