• 제목/요약/키워드: magnetic flux density

검색결과 681건 처리시간 0.05초

전자척의 고정압력분포에 관한 실험적 연구 (Experimental Study on the chuncking Pressure Distribution of Electro-Magnetic Chucks)

  • 김청균
    • 한국생산제조학회지
    • /
    • 제5권1호
    • /
    • pp.27-32
    • /
    • 1996
  • This paper deals with the distributions of magnetic flux of an electro-magnetic chuck which is one of the most commonly used chucking attachments in a surface grinding machine. The measured results showed good correspondence with the theoretical results which were previously presented by the same author. The normal and tangential components of the magnetic flux density were measured using the gauss meter. The measured results indicated that the magnetic flux density was periodically changing over the transverse position to the magnetic pole. The normal component of magnetic flux decreases very rapidly for the increased z position.

  • PDF

자유곡면의 밀링 자기연마 복합가공에 관한 연구 (Compound Machining of Milling and Magnetic Abrasive Polishing for Free Form Surface)

  • 곽태경;김상오;곽재섭
    • 한국생산제조학회지
    • /
    • 제19권4호
    • /
    • pp.455-461
    • /
    • 2010
  • Automated magnetic abrasive polishing which can be applied after machining of the mold on a machine tool without unloading is very effective for finishing a complicated injection mold surface. This study aims to realize one step polishing of free form surface with the same machine tool. For this purpose, magnetic flux density according to the change of curvature radii was simulated for selecting polishing conditions and experimental verification was performed with a complicated mold of aluminum alloy. As a result, it was seen by the simulation that the magnetic flux density at a gradual curvature of the mold was higher than at a steep curvature and the higher magnetic flux density produced the better surface roughness in the experimentation. The deviation for the surface roughness of the mold decreased on the whole and the uniform mold surface was obtained after the automated magnetic abrasive polishing.

시변 고자기장 발생 장치 및 검출회로 (High Magnetic Flux Generator and Detector)

  • 허준;신한호;전성즙
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 추계학술대회
    • /
    • pp.167-168
    • /
    • 2018
  • Recently high magnetic flux is used for water treatment and medical treatment. The magnetic flux density reaches up to several Tesla. In this paper, high magnetic flux generator and detector are investigated. The target flux density is 7 Tesla. Proto-types are made and tested.

  • PDF

인공신경망을 이용한 벌크 비정질 합금 소재의 포화자속밀도 예측 성능평가 (Artificial Neural Network Supported Prediction of Magnetic Properties of Bulk Metallic Glasses)

  • 남충희
    • 한국재료학회지
    • /
    • 제33권7호
    • /
    • pp.273-278
    • /
    • 2023
  • In this study, based on the saturation magnetic flux density experimental values (Bs) of 622 Fe-based bulk metallic glasses (BMGs), regression models were applied to predict Bs using artificial neural networks (ANN), and prediction performance was evaluated. Model performance evaluation was investigated by using the F1 score together with the coefficient of determination (R2 score), which is mainly used in regression models. The coefficient of determination can be used as a performance indicator, since it shows the predicted results of the saturation magnetic flux density of full material datasets in a balanced way. However, the BMG alloy contains iron and requires a high saturation magnetic flux density to have excellent applicability as a soft magnetic material, and in this study F1 score was used as a performance indicator to better predict Bs above the threshold value of Bs (1.4 T). After obtaining two ANN models optimized for the R2 and F1 score conditions, respectively, their prediction performance was compared for the test data. As a case study to evaluate the prediction performance, new Fe-based BMG datasets that were not included in the training and test datasets were predicted using the two ANN models. The results showed that the model with an excellent F1 score achieved a more accurate prediction for a material with a high saturation magnetic flux density.

자속밀도를 미지변수로 한 2차원 정자장 유한요소 해석 (Finite Element Analysis of 2-D Magnetostatic Problem using Magnetic flux density as an unknown variable)

  • 장우석;한송엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 추계학술대회 논문집 학회본부
    • /
    • pp.37-40
    • /
    • 1989
  • When we analyze the magnetostatic problem by the FEM, it is a traditional method to use the magnetic vector potential as an unknown variable.(abbreviated to A Method) Therefore, we should differentiate this magnetic vector potential to get the magnetic flux density. In this procedure of differentiation, the accuracy of the calculation is reduced. In order to overcome this problem, this paper uses the magnetic flux density as an unknown variable.(abbreviated to B Method) The validity of this new method (B Method) to use the magnetic flux density directly as an unknown variable, is ensured as the result of the application example researches.

  • PDF

형광등 Positive column에 대한 자장인가 효과 (Magnetic field effect on the positive column of fluorescent lamp)

  • 지철근;김창종
    • 전기의세계
    • /
    • 제31권3호
    • /
    • pp.197-203
    • /
    • 1982
  • The effects on the characteristics of 20-W fluorescent lamp were studied when applying magnetic field to its positive column. First, when the direction of the magnetic field is axial, i.e., along the lamp, if the magnitude of the field is stronger than the critical field, lamp voltage is increased, lamp current decreased, luminous flux increased, starting voltage decreased, as increasing the applied magnetic field. At the magnetic flux density is 130 gauss, luminous flux is increased to about 6 percents and starting voltage is increased to about 45 percents. Second, when the direction of the magnetic field is transverse to the lamp axis, as increasing the applied magnetic field, lamp voltage is increased, lamp current decreased, luminous flux increased and starting voltage is nearly constant, but the rates of increase or decrease of this case is different from those of the first. At the magnetic flux density is 300 gauss, luminous flux is increased about 45 percents. In both cases, electric power dissipated by lamps is the same as that of the lamp which magnetic field is not applied to.

  • PDF

응력확대계수측정을 위한 하중에 의한 자속밀도변화의 실험적 연구 (Experimental Research of Change in Magnetic Flux Density Due to Load for Measuring KI)

  • 이정희
    • 한국산업융합학회 논문집
    • /
    • 제7권1호
    • /
    • pp.129-132
    • /
    • 2004
  • In order to determine the effective way of measuring the Mode I stress intensity factor, $K_I$, by means of the alternating current potential drop(ACPD) technique for a material containing a two-dimensional surface crack, the change in magnetic flux density above the cracked specimen surface was studied experimentally. The change in magnetic flux in the air above the cracked specimen made of aluminum alloy is measured by changing the load by four-point bending. The magnetic flux in the air is almost not changed by increasing the load in teh specimen. The change in potential drop due to load is not caused by the change in electro-motive force induced in the coiled measuring system. This experimental result agree to the result of theoretical analysis in reference 7).

  • PDF

Design of a Magnet Assembly for an NMR Based Sensor Using Finite Element Analysis

  • Cho, S.I.;Chung, C.H.;Kim, S.C.
    • Agricultural and Biosystems Engineering
    • /
    • 제1권1호
    • /
    • pp.49-53
    • /
    • 2000
  • A magnet assembly is a critical element of a nuclear magnetic resonance(NMR) based sensor. Magnetic flux density and homogeneity are essential to its optimum performance. Geometry and magnet material properties determine the magnetic flux density and homogeneity of the assembly. This study was carried out to develop the design for a magnet assembly. A 2-D finite element model for the magnetic assembly was developed using ANSYS and evaluated the effects of adding shimming frames and steel bars in the corners of the rectangular steel cover which surrounded the magnet. The assembly was manufactured and evaluated. According to the ANSYS model, modified pole frames increased magnetic flux density by 8.3% and increased homogeneity by 83%. Addition of steel bars in the corners increased the magnetic flux density by 1%, and improved homogeneity up to three times. The difference between simulated and measured magnetic flux densities at the center point of the air gap was within 2.4%.

  • PDF

전자기 성형에서의 테이퍼진 지속집중기의 자기압력에 관한 연구

  • 최재찬;조용철;이종수;황운석;김남환
    • 한국정밀공학회지
    • /
    • 제7권2호
    • /
    • pp.14-27
    • /
    • 1990
  • Electromagnetic Pulse Forming is the one of the high velocity forming method. When the electric energy which is charged in the capacitor bank is suddenly discharged into the electromagnetic coil, the high magnetic field occurs at the airgap between the electromagnetic coil and workpiece. Thus we can obtain the high electromagnetic pressure, which is proportional to the square of magnetic flux density. This is the basic principle of the electromagnetic pulse forming. In this paper, the equivalent L-R-C circuit is derived by computing the magnetic field and its loss of the total system. Thus, the values of the magnetic flux density and pressure can be obtained from the equation of this circuit. As a result, the computed and measured values of the maximum magnetic flux density and pressure are compared and the characteristics of the tapered field shaper are further discussed as follows; 1) The strength of magnetic flux density and pressure can be controlled by the charged energy and the size of the airgap between the inner field shaper and the workpiece. 2) During the design of the tapered field shaper, the penetration of the magnetic flux through the sharp edge should be considered.

  • PDF