• Title/Summary/Keyword: magnetic film

Search Result 1,018, Processing Time 0.03 seconds

Effect of Highly Oriented Layer on GMR and Magnetic Properties of NiFe/Cu Thin Film Prepared by Magnetron Sputtering

  • Yoo, Yong-Goo;Yu, Seong-Cho;Min, Seong-Gi;Kim, Kyeong-Sup;Jang, Pyung-Woo
    • Journal of Magnetics
    • /
    • v.6 no.4
    • /
    • pp.129-131
    • /
    • 2001
  • In order to investigate the effect of the interface on GMR, [NiFe(25 ${\AA}$)/Cu(24${\AA}$)]$_2$/Si thin film was epitaxially grown on HF-treated Si (001) substrate using a DC magnetron sputtering method. Typical GMR effects could be observed in epitaxial film with a weak antiferromagnetic exchange coupling while non epitaxial film showed unsaturated and broad MR curves probably due to inter-diffusion between NiFe and Cu layers. Ferromagnetic resonance (FMR) experiment showed two distinct absorption peaks in all films. Each peak was revealed to come from each NiFe layer with different magnetic property. In FMR measurement very clear interface in epitaxial films could be confirmed by a lower value of line width (ΔH) and higher M$\sub$s/ of epitaxial film than those of non epitaxial films, respectively.

  • PDF

Characteristic Analysis of Spiral Type Thin-Film Inductor Using Finite Element Method (유한요소법을 이용한 스파이럴 박막인덕터의 특성해석)

  • Ha, Gyeong-Ho;Hong, Jeong-Pyo;Song, Jae-Seong;Min, Bok-Gi;Kim, Hyeon-Sik
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.11
    • /
    • pp.617-624
    • /
    • 1999
  • The spiral type thin-film inductor performed in high frequency at 2-5[MHz] range is analyzed by 2-dimensional Finite Element Method(2D FEM). The features of micro thin-film inductor have complicated electromagnetic phenomenon such as skin effect, proximity effect and magnetic saturation. To develope miniatured magnetic device considering these features, it is important to predict the property of the thin film inductor according to design parameter. In this paper, we present the 2D FEM analysis for the spiral type thin film inductor. The characteristics of inductor from point of view of inductance, resistance and quality factor are studied according to design parameter and various pattern construction.

  • PDF

Thin Film Growth and Evaluation Method for Conventional Co-Cr Based Perpendicular Magnetic Recording Media: Problems and New Solutions

  • Saito, Shin;Hoshi, Fumikazu;Hasegawa, Daiji;Takahashi, Migaku
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.115-125
    • /
    • 2002
  • We proposed a novel method to evaluate the magnetic properties of the initial layer and the columnar structure separately for CoCr-based perpendicular recording media. We show that the thickness of the initial layer and the intrinsic magnetocrystalline anisotropy of columnar structure can be quantitatively evaluated using the plotted product of perpendicular anisotropy to magnetic film thickness versus magnetic film thickness ($K_{u{\bot}}^{ex{p.}}$ $\times$ d$_{mag.}$ vs. d$_{mag.}$ plot). Based on the analyses, it is found that: (1) compared with CoCrPtTa media, CoCrPtB media have relatively thin initial layer, and have fine grains with homogeneous columnar structure with c-plane crystallographic orientation; (2) CoCrPtB media can be grown epitaxially on Ru or CoCr/C intermediate layer, and as the result, the magnetic properties of the media within thin thickness region of d$_{mag.}$ $\leq$ 20 nm is significantly improved; (3) the key issue of material investigation for CoCr-based perpendicular recording media will be focused on how to fabricate c-plane-oriented columnar grains well isolated with nonmagnetic substance in epitaxial-growth media, while maintaining the thermal stability of the media.

The Effect of Additional Elements X on Magnetic Properties of CoCrTa/Cr-X Thin Film (CoCrTa/Cr-X 자성박막의 자기적성질에 미치는 첨가원소 X의 영향)

  • 김준학;박정용;남인탁;홍양기
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.4
    • /
    • pp.314-319
    • /
    • 1993
  • The Effects of additional element X (X = Si, Mo, Cu, Gd) on magnetic properties and microstructure of Co-1Zat%Cr-Zat%Ta/Cr-X magnetic thin film were investigated. The thickness changes of Cr-X underlayer and CoCrTa magnetic layer were in the range of $1000~2000\AA$ and $200~800\AA$. respectively. Substrate temperatures were controlled from $100^{\circ}C$ to $200^{\circ}C$. Increase of coercivity by about 100~200 Oe was observed in CoCrTa/Cr-X thin films compared to those without additional X element. Cu was the most effective additional element for increasing coercivity. CoCrTa/Cr-Cu thin film shows relatively high coercivity in $1500\AA$ underlayer thickness and $600\AA$ magnetic layer thickness.

  • PDF

MBE growth and magnetic properties of epitaxial FeMn2O4 film on MgO(100)

  • Duong, Van Thiet;Nguyen, Thi Minh Hai;Nguyen, Anh Phuong;Dang, Duc Dung;Duong, Anh Tuan;Nguyen, Van Quang;Cho, Sunglae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.318.2-318.2
    • /
    • 2016
  • FeM2X4 spinel structures, where M is a transition metal and X is oxygen or sulfur, are candidate materials for spin filters, one of the key devices in spintronics. Both the Fe and M ions can occupy tetrahedral and octahedral sites; therefore, these types of compounds can display various physical and chemical properties [1]. On the other hand, the electronic and magnetic properties of these spinel structures could be modified via the control of cation distribution [2, 3]. Among the spinel oxides, iron manganese oxide is one of promising materials for applications. FeMn2O4 shows inverse spinel structure above 390 K and ferrimagnetic properties below the temperature [4]. In this work, we report on the structural and magnetic properties of epitaxial FeMn2O4 thin film on MgO(100) substrate. The reflection high energy electron diffraction (RHEED) and X-ray diffraction (XRD) results indicated that films were epitaxially grown on MgO(100) without the impurity phases. The valance states of Fe and Mn in the FeMn2O4 film were carried out using x-ray photoelectron spectrometer (XPS). The magnetic properties were measured by vibrating sample magnetometer (VSM), indicating that the samples are ferromagnetic at room temperature. The structural detail and origin of magnetic ordering in FeMn2O4 will be discussed.

  • PDF

Effects of Sputtering pressure on preferred Orientation of Shielding NbTi Thin Film by RF Magnetron Sputtering (RF 마그네트론 스퍼터링법으로 제조된 차폐용 NbTi박막의 우선방향에 미치는 스퍼터링 압력의 영향)

  • Kim, Bong-Seo;Woo, Byung-Chul;Byun, Woo-Bong;Lee, Hee-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1098-1101
    • /
    • 1995
  • NbTi thin films were prepared on Si wafer and Cu substrate by rf magnetron sputtering in the range of sputtering pressure $3{\times}10^{-2}$torr to $3{\times}10^{-4}$torr at room temperature. The influence of sputtering pressure and substrate type on crystallographic orientation and morphology of NbTi thin films was investigated by using X-ray diffraction(XRD) and scanning electron microscopy(SEM), respectively. And the effect of crystallographic orientation and morphology of NbTi film on electromagnetic behaviors was estimated by measuring critical current in various applied magnetic field. The film morphology changed from porous structure consisting of tapered crystallites to densely deposited film decreasing with sputtering pressure. The change of crystallographic orientation with the sputtering pressure and rf power was calculated from the texture coefficient of(002) plane based on XRD patterns. It was found that a change of texture coefficient of(002) plane increased with decreasing sputtering pressure. From observation of critical current in various applied magnetic field, we have identified that the change of critical current abruptly decrease applying with magnetic field and NbTi film produced at high sputtering pressure does not exhibit superconductivity but at low sputtering pressure shows superconductivity.

  • PDF

Electro-Optical Characteristic for VA-LCD on the $SiO_x$ Thin Film Layer Oblique Deposited by Sputtering Method (스퍼터링으로 경사증착한 $SiO_x$ 박막을 이용한 VA-LCD의 전기광학특성)

  • Choi, Sung-Ho;Hwang, Jeoung-Yeon;Kim, Sung-Yeon;Oh, Byeong-Yun;Myoung, Jae-Min;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.451-452
    • /
    • 2006
  • We studied the electro-optical characteristic of vertical alignment liquid crystal display(VA-LCD) on the $SiO_x$ thin film deposited $45^{\circ}$ oblique by rf magnetic sputtering system. LC alignment characteristic showed homeotropic alignment, and pretilt angle was about $90^{\circ}$. A uniform liquid crystal alignment effect on the $SiO_x$ thin film was achieved and the electro-optical characteristic of the $SiO_x$ thin film deposited $45^{\circ}$ oblique by rf magnetic sputtering system was excellent.

  • PDF

Application of a New NDI Method using Magneto-Optical Film for Inspection of Micro-Cracks (미소균열 탐상을 위한 자기광학소자를 이용한 비파괴탐상법의 제안과 적용)

  • Lee, Hyoung-No;Park, Han-Ju;Shoji, Tetsuo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.2
    • /
    • pp.197-203
    • /
    • 2001
  • Micro-defects induced by design and production failure or working environments are known as the cause of SCC(Stress Corrosion Cracking) in aged structures. Therefore, the evaluation of structural integrity based on micro-cracks is required not only a manufacturing step but also in-service term. So we introduce a new nondestructive inspection method using the magneto-optical film to detect micro-cracks. The method has some advantage such as high testing speed, real time data acquistion and the possibility of remote sensing by using of a magneto-optical film that takes advantage of the change of magnetic domains and domain walls. This paper introduces the concept of the new nondestructive inspection method using the magneto-optical film, also proves the possibility of this method as a remote testing system under oscillating load considering application on real fields by applying the method to four types of specimens.

  • PDF

Study of Magnetic Field Shielded Sputtering Process as a Room Temperature High Quality ITO Thin Film Deposition Process

  • Lee, Jun-Young;Jang, Yun-Sung;Lee, You-Jong;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.288-289
    • /
    • 2011
  • Indium Tin Oxide (ITO) is a typical highly Transparent Conductive Oxide (TCO) currently used as a transparent electrode material. Most widely used deposition method is the sputtering process for ITO film deposition because it has a high deposition rate, allows accurate control of the film thickness and easy deposition process and high electrical/optical properties. However, to apply high quality ITO thin film in a flexible microelectronic device using a plastic substrate, conventional DC magnetron sputtering (DMS) processed ITO thin film is not suitable because it needs a high temperature thermal annealing process to obtain high optical transmittance and low resistivity, while the generally plastic substrates has low glass transition temperatures. In the room temperature sputtering process, the electrical property degradation of ITO thin film is caused by negative oxygen ions effect. This high energy negative oxygen ions(about over 100eV) can be critical physical bombardment damages against the formation of the ITO thin film, and this damage does not recover in the room temperature process that does not offer thermal annealing. Hence new ITO deposition process that can provide the high electrical/optical properties of the ITO film at room temperature is needed. To solve these limitations we develop the Magnetic Field Shielded Sputtering (MFSS) system. The MFSS is based on DMS and it has the plasma limiter, which compose the permanent magnet array (Fig.1). During the ITO thin film deposition in the MFSS process, the electrons in the plasma are trapped by the magnetic field at the plasma limiters. The plasma limiter, which has a negative potential in the MFSS process, prevents to the damage by negative oxygen ions bombardment, and increases the heat(-) up effect by the Ar ions in the bulk plasma. Fig. 2. shows the electrical properties of the MFSS ITO thin film and DMS ITO thin film at room temperature. With the increase of the sputtering pressure, the resistivity of DMS ITO increases. On the other hand, the resistivity of the MFSS ITO slightly increases and becomes lower than that of the DMS ITO at all sputtering pressures. The lowest resistivity of the DMS ITO is $1.0{\times}10-3{\Omega}{\cdot}cm$ and that of the MFSS ITO is $4.5{\times}10-4{\Omega}{\cdot}cm$. This resistivity difference is caused by the carrier mobility. The carrier mobility of the MFSS ITO is 40 $cm^2/V{\cdot}s$, which is significantly higher than that of the DMS ITO (10 $cm^2/V{\cdot}s$). The low resistivity and high carrier mobility of the MFSS ITO are due to the magnetic field shielded effect. In addition, although not shown in this paper, the roughness of the MFSS ITO thin film is lower than that of the DMS ITO thin film, and TEM, XRD and XPS analysis of the MFSS ITO show the nano-crystalline structure. As a result, the MFSS process can effectively prevent to the high energy negative oxygen ions bombardment and supply activation energies by accelerating Ar ions in the plasma; therefore, high quality ITO can be deposited at room temperature.

  • PDF