• Title/Summary/Keyword: magnetic field simulation

Search Result 487, Processing Time 0.028 seconds

Simulation of a neutron imaging detector prototype based on SiPM array readout

  • Mengjiao Tang;Lianjun Zhang;Bin Tang;Gaokui He;Chang Huang;Jiangbin Zhao;Yang Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3133-3139
    • /
    • 2023
  • Neutron imaging technology as a means of non-destructive detection of materials is complementary to X-ray imaging. Silicon photomultiplier (SiPM), a new type of optical readout device, has overcome some shortcomings of traditional photomultiplier tube (PMT), such as high-power consumption, large volume, high price, uneven gain response, and inability to work in strong magnetic fields. Its application in the field of neutron detection will be an irresistible general trend. In this paper, a thermal neutron imaging detector based on 6LiF/ZnS scintillation screen and SiPM array readout was developed. The design of the detector geometry was optimized by geant4 Monte Carlo simulation software. The optimized detector was evaluated with a step wedge sample. The results show that the detector prototype with a 48 mm × 48 mm sensitive area can achieve about 38% detection efficiency and 0.26 mm position resolution when using a 300 ㎛ thick 6LiF/ZnS scintillation screen and a 2 mm thick Bk7 optical guide coupled with SiPM array, and has good neutron imaging capability. It provides effective data support for developing high-performance imaging detectors applied to the China Spallation Neutron Source (CSNS).

High-Frequency Modeling of Printed Spiral Coil Probes for Radio-Frequency Interference Measurement (무선주파수 간섭 측정을 위한 Printed Spiral Coil (PSC) 프로브의 고주파 모델링)

  • Kim, yungmin;Song, Eakhwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.1
    • /
    • pp.10-19
    • /
    • 2018
  • In this paper, a new high-frequency equivalent circuit model of printed spiral coils (PSCs) for radio-frequency interference (RFI) measurement has been proposed. To achieve high-frequency modeling, the proposed model consists of distributed components designed based on the design parameters of the PSCs. In addition, an analytic model for PSCs based on T-pi conversion has been proposed. To investigate the feasibility of the proposed model for RFI measurement, the transfer function between a microstrip line and a PSC has been extracted by combining the proposed model and mutual inductance. The self-impedances of the proposed model and the transfer function have been successfully validated using three-dimensional field simulation and measurements, revealing noticeable correlations up to a frequency of 6 GHz. The proposed model can be employed for high-frequency probe design and RFI noise estimation in the gigahertz range wireless communication bands.

Real-time Image Scanning System for Detecting Tunnel Cracks Using Linescan Cameras

  • Jeong, Dong-Hyun;Kim, Young-Rin;Cho, I-Sac;Kim, Eun-Ju;Lee, Kang-Moon;Jin, Kwang-Won;Song, Chang-Geun
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.6
    • /
    • pp.726-736
    • /
    • 2007
  • In this paper, real-time image scanning system using linescan cameras is designed. The system is specially designed to diagnose and analyse the conditions of tunnels such as crack widths through the captured images. The system consists of two major parts, the image acquisition system and the image merging system. To save scanned image data into storage media in real-time, the image acquisition system has been designed with two different control and management modules. The control modules are in charge of controlling the hardware device and the management modules handle system resources so that the scanned images are safely saved to the magnetic storage devices. The system can be mounted to various kinds of vehicles. After taking images, the image merging system generates extended images by combining saved images. Several tests are conducted in laboratory as well as in the field. In the laboratory simulation, both systems are tested several times and upgraded. In the field-testing, the image acquisition system is mounted to a specially designed vehicle and images of the interior surface of the tunnel are captured. The system is successfully tested in a real tunnel with a vehicle at the speed of 20 km/h. The captured images of the tunnel condition including cracks are vivid enough for an expert to diagnose the state of the tunnel using images instead of seeing through his/her eyes.

  • PDF

Study on Leading-phase Operation Capability of a 770 MW Jumbo Hydro-generator based on Stability Analysis and End-Region Heat Analysis

  • Fan, Zhen-nan;Zhou, Zhi-ting;Li, Jian-fu;Wen, Kun;Wang, Jun;Sun, Zhang;Wang, Tao;Yao, Bing
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1317-1325
    • /
    • 2018
  • A generator-grid coupling calculation model is established to study the leading-phase operational capability of a 770 MW jumbo hydro-generator in a Chinese ultra-mega hydropower station. The static and dynamic stability of the generator are analyzed and calculated to obtain stability limits under leading-phase operating conditions. Three-dimensional (3D) time-varying nonlinear moving electromagnetic and temperature field models of the generator end-region are also established and used to determine the magnetic field, loss, and temperature of the end-region under the leading-phase operating condition. The simulation results agree with data measured from the actual 770 MW hydro-generator. This paper provides reliable reference data for the leading-phase operation of a jumbo hydro-generator, which will help to improve in the design and manufacture of future hydro-generators.

Analysis of Shielding Effectiveness of Low Conductivity Shield Layers within Near-field Region (근거리장에 놓인 저전도율 차폐막의 차폐 효과 분석)

  • Lee, Won-Seon;Lee, Won-Hui;Hur, Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.59-65
    • /
    • 2019
  • The EMI shielding effectiveness of shielding layers thickness was analyzed when the low conductivity shielding layers was placed in the near field of the noise source. A spiral antenna with broadband characteristics was used as the noise source, and graphite was selected as the low conductivity shielding material. Two spiral antennas were constructed to analyze the transmission coefficient between two antennas, and the distances between the transmitting and receiving antennas were 5 cm and 10 cm. The thickness of the shielding layers was changed from 1 um to 200 um. The frequency was changed from 100 MHz to 6 GHz to obtain a maximum SE(Shielding Effectiveness) of 70 dB. In this simulation, electronic shielding was used due to the nature of graphite, which is a shielding film material. Based on these results, we will study how to improve the shielding performance by implementing magnetic shielding in the future.

A Tool Box to Evaluate the Phased Array Coil Performance Using Retrospective 3D Coil Modeling (3차원 코일 모델링을 통해 위상배열코일 성능을 평가하기 위한 프로그램)

  • Perez, Marlon;Hernandez, Daniel;Michel, Eric;Cho, Min Hyoung;Lee, Soo Yeol
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.2
    • /
    • pp.107-119
    • /
    • 2014
  • Purpose : To efficiently evaluate phased array coil performance using a software tool box with which we can make visual comparison of the sensitivity of every coil element between the real experiment and EM simulation. Materials and Methods: We have developed a $C^{{+}{+}}$- and MATLAB-based software tool called Phased Array Coil Evaluator (PACE). PACE has the following functions: Building 3D models of the coil elements, importing the FDTD simulation results, and visualizing the coil sensitivity of each coil element on the ordinary Cartesian coordinate and the relative coil position coordinate. To build a 3D model of the phased array coil, we used an electromagnetic 3D tracker in a stylus form. After making the 3D model, we imported the 3D model into the FDTD electromagnetic field simulation tool. Results: An accurate comparison between the coil sensitivity simulation and real experiment on the tool box platform has been made through fine matching of the simulation and real experiment with aids of the 3D tracker. In the simulation and experiment, we used a 36-channel helmet-style phased array coil. At the 3D MRI data acquisition using the spoiled gradient echo sequence, we used the uniform cylindrical phantom that had the same geometry as the one in the FDTD simulation. In the tool box, we can conveniently choose the coil element of interest and we can compare the coil sensitivities element-by-element of the phased array coil. Conclusion: We expect the tool box can be greatly used for developing phased array coils of new geometry or for periodic maintenance of phased array coils in a more accurate and consistent manner.

Sensitivity Assessment of Spiral RF Surface Coils for MR Microscopic Imaging and Spectroscopy (자기공명미세영상 및 분광법을 위한 나선형 RF 표면코일의 감는 횟수에 따른 민감도 평가)

  • Woo, Dong-Cheol;Ha, Seung-Hoon;Choi, Chi-Bong;Choe, Bo-Young
    • Progress in Medical Physics
    • /
    • v.17 no.3
    • /
    • pp.153-158
    • /
    • 2006
  • The purpose of this study was to improve the technique so as to develop an advanced sensitive RF surface coil for investigating the sensitivities of the multi-spiral surface coils, and we eventually wanted to achieve high resolution of the microscopic MR images and MR spectra. The magnetic field inhomogeneity and shape of a surface coil were statistically estimated by simulation of the magnetic field distribution. On the basis of the experimental results with single, 3 and S-turned spiral RF surface coils, we found that the 3-turned coil had the highest sensitivity. The present study showed that the sensitivity of the RF surface coil was improved by increasing the number of spiral coil turns, and also the SNR of the RF surface coil was dependent upon the number of spiral coil turns. However, we found, rather strikingly, that the sensitivity of excessive turns of the coils was decreased due to the rise of the coil's Impedance. Thus, the present results demonstrated that the sensitivity was not proportional to the number of a spiral RF coil's turns, and the number of spiral coil turns should be optimized for obtaining the highest sensitivity and SNR.

  • PDF

Microwave Breakdown and High-Power Handling Capability of Circular Waveguide Cavity Filter (원통형 도파관 캐비티 필터의 마이크로파 방전과 고전력 취급 능력)

  • Lee, Sun-Ik;Kim, Joong-Pyo;Lim, Won-Gyu;Kim, Sang-Goo;Jang, Jin-Baek
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.3
    • /
    • pp.80-85
    • /
    • 2017
  • In this paper, a mircrowave breakdown of X-band circular waveguide cavity filter, which occurred during ground test, was introduced, and electro-magnetic field simulation results to identify a root cause, and the analysis of possibility of its occurrence on orbit operation were presented. Filter modeling for simulation was conducted with a commercial tool (FEST3D), and electric fields inside the filter were monitored at the input of 1 W continuous wave. In our observation, strong electric field intensities were monitored on the tuning screws especially at the input of band-edge frequencies. The threshold power levels for the breakdown were also estimated and compared with the input power levels actually injected to the filter. From this estimation, we could figure out that the power exceeding the breakdown threshold was injected to the filter so that strong electric fields were generated and temperature increased high, and this became a root cause of the electrical short. Our further analysis showed that this kind of microwave breakdown is not likely to occur on orbit operation, and multipactor is expected not to occur at the input of band-edge frequencies. As a measure to prevent the microwave breakdown, we suggested to avoid the injection of band-edge frequencies and inject lower power levels to the filter.

Determination of Electron Spin Relaxation Time of the Gadolinium-Chealted MRI Contrast Agents by Using an X-band EPR Technique (EPR을 통한 상자성 자기공명 조영제의 전자스핀 이완시간의 결정)

  • Sung-wook Hong;Yongmin Chang;Moon-jung Hwang;Il-su Rhee;Duk-Sik Kang
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.1
    • /
    • pp.27-33
    • /
    • 2000
  • Purpose: To determine the electronic spin relaxation times, $T_{le}$, of three commercially available Gd-chelated MR contrast agents, Gd-DTPA, Gd-DTPA-BMA and Gd-DOTA, using Electron Paramagnetic Resonance(EPR) technique. Material and Methods: The paramagnetic MR contrast agents, Gd-DTFA(Magnevist) , Gd-DTFA-BMA(OMNISCAN) and Gd-DOTA(Dotarem), were used for this study, The EPR spectra of these contrast agents, which were prepared 2:1 methanol/water solution, were obtained at low temperatures, from $-160^{\circ}C~20^{\circ}C$. The glassy-state EPR spectra for these contrast agents were then fitted by the simulation spectra generated with different zero-field splitting (ZFS) parameters by a computer simulation program 'GEN', which generates the EPR powder spectrum using a given ZFS in $3{\times}3$ tensor. Finally, the spin relaxation times of the contrast agents were then determined from the $T_{2e}$, D, and E values of the best simulation spectra using the McLachlan's theory of average relaxation rate. Results: The electronic transverse spin relaxation times, $T_{2e}'s$, of Gd-DTPA, Gd-DTPA-BMA and Gd-DOTA were 0.113ns, 0.147ns and 1.81ns respectively. The g-values were 1.9737, 1.9735 and 1.9830 and the electronic spin relaxation times, $T_{1e}'s$, were 18.70ns, 33.40ns and $1.66{\mu}s$, respectively. Conclusion: The results of these studies reconfirm that the paramagnetic MR contrast agents with larger ZFS parameters should have shorter $T_{1e}'s$. Among three contrast agents used for this study, Gd-DOTA chelated with cyclic ligand structure shows better electronic property then the others with linear structure. Thus, it is concluded that the exact determination of ZFS parameters is the important factor in evaluating relaxation enhancement effect of the agents and in developing new contrast agents.

  • PDF

Magnetoresistance Effects of Magnetic Tunnel Junctions with Amorphous CoFeSiB Single and Synthetic Antiferromagnet Free Layers (비정질 CoFeSiB 단일 및 합성형 반강자성 자유층을 갖는 자기터널접합의 자기저항 효과)

  • Hwang, J.Y.;Kim, S.S.;Rhee, J.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.6
    • /
    • pp.315-319
    • /
    • 2005
  • To obtain low switching field ($H_{SW}$) we introduced amorphous ferromagnetic $Co_{70.5}Fe_{4,5}Si_{15}B_{10}$ single and synthetic antiferromagnet (SAF) free layers in magnetic tunnel junctions (MTJs). The switching characteristics for MTJs with structures $Si/SiO_2/Ta$ 45/Ru 9.5/IrMn 10/CoFe 7/AlOx/CoFeSiB 7 or CoFeSiB (t)/Ru 1.0/CoFeSiB (7-t)/Ru 60 (in nm) were investigated and compared to MTJs with $Co_{75}Fe_{25}$ and $Ni_{80}Fe_{20}$ free layers. CoFeSiB showed a lower saturation magnetization of $560 emu/cm^3$ and a higher anisotropy constant of $2800\;erg/cm^3$ than CoFe and NiFe, respectively. An exchange coupling energy ($J_{ex}$) of $-0.003erg/cm^2$ was observed by inserting a 1.0 nm Ru layer in between CoFeSiB layers. In the CoFeSiB single and SAF free layer MTJs, it was frond that the size dependence of the $H_{SW}$ originated from the lower $J_{ex}$ experimentally and by micromagnetic simulation based on the Landau-Lisfschitz-Gilbert equation. The CoFeSiB SAF structures showed lower $H_{SW}$ than that of NiFe, CoFe and CoFeSiB single structures. The CoFeSiB SAF structures were proved to be beneficial far the switching characteristics such as reducing the coercivity and increasing the sensitivity in micrometer to submicrometer-sized elements.