• Title/Summary/Keyword: magnetic field coil

Search Result 568, Processing Time 0.027 seconds

Performance and Manufacture of the Apparatus Generating Artificial Magnetic Field of 3-axis Type (3축형 인공자장발생장치의 제작과 성능에 관한 연구)

  • 이유원
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.3
    • /
    • pp.181-188
    • /
    • 2003
  • The objects of this study were to discuss the performance of its using magnetic compass and to do a trial manufacture of the apparatus generating artificial magnetic field of 3-axis type to assess the performance of compass using terrestrial magnetism in the various magnetic field. The results obtained were summarized as follows: The magnetic field of each axis showed the linearly increase in accordance with the increase of electrical current. Average range difference between measured and calculated values was 0.33∼1.93μT and there were no big difference. The magnitude and direction of magnetic field showed some change in the edge of Helmholtz coil, but it appeared to stabilize in the center. In the horizontal magnetic force of 0.30gauss and 0.40gauss, the measured and calculated values of the damping characteristic of magnetic compass showed a good agreement. However, the confidence level was low at the horizontal magnetic force of 0.50gauss.

A Study on the Numerical Analysis of Magnetic Flux Density by a Solenoid for MIAB Welding (MIAB용접에서 코일에 의한 자속밀도 분포의 수치적 해석에 관한 연구)

  • Choe, Dong-Hyeok;Kim, Jae-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.73-81
    • /
    • 2001
  • The MIAB welding uses a rotating arc as its heat source and is known as an efficient method fur pipe butt welding. The arc is rotated around the weld line by the electro-magnetic force resulting from the interaction of arc current and magnetic field. The electro-magnetic force is affected by magnetic flux density, arc current, and arc length. Especially, the magnetic flux density is an important factor on arc rotation and weld quality. This paper presents a 2D finite element model for the analysis of magnetic flux density in the actual welding conditions. The magnetic flux density is mainly dependent on gap between two pipes, the position of coil from gap center, exciting current, and relative permeability. Thus, the relations between magnetic flux density and main factors were investigated through experiment and analysis. Experiments were performed for the steel pipes(48.1mm O.D and 2.0mm thickness). The analysis results of magnetic flux density reveal that it increases with increasing exciting current, increasing relative permeability, decreasing distance from gap center to coil, and decreasing gap size. It is considered that the results of this study can be used as important data on the design of coil system and MIAB welding system.

  • PDF

A study on the current limiting characteristics and magnetic analysis of the non-inductively wound coil (타입에 따른 무유도 권선형 코일의 한류 특성연구 및 자장해석)

  • Jang, Jae-Young;Park, Dong-Keun;Chang, Ki-Sung;Na, Jin-Bae;Kim, Won-Cheol;Chung, Yood-Do;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.25-29
    • /
    • 2009
  • To reduce the power loss in normal state, non-inductively wound high temperature superconducting (HTS) coils are used for fault current limiter (FCL) application. Non-inductively wound coils can be classified into two types: solenoid type and pancake type. These two types have different electrical and thermal and mechanical characteristics due to their winding structure difference. This paper deals with the current limiting characteristics, magnetic field analysis of the two coils. Simulation using finite element method (FEM) was used to analyze the magnetic field distribution and inductance of the coils. Short circuit test using stabilizer-free coated conductor (CC) was also carried out. We can compare the characteristics of the two types of coil by using the data obtained from simulation and short circuit test. We confirmed the feasibility of FCL application by the analysis about the characteristics of non-inductively wound coil using CC.

Design of a Magnetic Field Source for In Vivo Experiments at Extremely Low Frequency (생체 실험용 극저주파 자기장 발생 장치의 설계)

  • 김정호;김윤명
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.871-877
    • /
    • 2003
  • In this paper, the design parameters for the magnetic field source at extremely low frequency are proposed. This facility can be used fur in vivo experiments with small animals to investigate biological response to the driving magnetic fields. In case that the exposed animals are motionless, the animals may be affected by the directivity of driving field. To avoid this effect, a 2-axis ELF magnetic field driving apparatus was designed. The optimum location and number of turns of each coil were obtained by numerical analysis. Applying these data to the MATLAB code(for computation), the magnetic field distribution was obtained. The calculation result fur a well-designed facility showed that the space in which the amplitude of the magnetic field lies within the 95 % of the magnetic field distribution was more than 60 % of each axis length.

Emulator Circuit for a Flux Locked Loop for Detection of Magnetocardiography Signal (심자도 신호 검출을 위한 Flux Locked Loop (FLL) Emulation 회로)

  • 안창범;이동훈;김인기;장경섭;김기태;정동현;최중필
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2749-2752
    • /
    • 2003
  • Magnetocardiography is a very weak biomagnetic field generated from the heart. Since the magnitude of the biomagnetic field is in the order of a few pico Tesla, it is measured with a superconducting quantum interference device (SQUID). SQUID is a transducer converting magnetic flux to voltage, however, its range of linear conversion is very restricted. In order to overcome the narrow dynamic range. a flux locked loop is used to feedback the output field with opposite polarity to the input field so that the total Held becomes zero. This prevents the operating point of the SQUID from moving too far away from the null point thereby escape from the linear region. In this paper, an emulator for the SQUID sensor and feedback coil is proposed. Magnetic courting between the original field and the generated field by the feedback coil is emulated by electronic circuits. By using the emulator, FLL circuits are analyzed and optimized without SQUID sensors. The emulator may be used as a test signal for multi-channel gain calibration and system maintenance.

  • PDF

A design of actively shielded superconducting MRI magnet (능동차폐형 초전도 MRI 마그네트의 설계)

  • 진홍범;류강식;송준태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.24-29
    • /
    • 1996
  • Magnetic field theories for the design of highly homogeneous magnet are introduced and a nonlinear optimization method for the design of actively shielded superconducting magnet is presented. The presented design method can optimize both main coil and shielding coil simultaneously by setting constraints on stray field intensity at a specified distance from the magnet center. A 2-Tesla actively shielded superconducting magnet, with 90cm bore diameter, is designed using the presented method. The field homogeneity is 2ppm/30cm DSV and the 5 gauss stray field contour is within 4m axially and 3m radially from the magnet center. (author)., 7 refs., 6 figs., 3 tabs.

  • PDF

Control of free surface shape in the electromagnetic casting process (전자기 주조공정에서의 자유표면 형상 제어)

  • 박재일;강인석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.612-615
    • /
    • 1996
  • In the continuous casting process, molten metal contacts the mold wall and the molten metal surface is subject to the mold oscillation. The mold oscillation results in the oscillation marks on the surface of solidified steel, which has undesirable effects on the quality of slabs. In order to reduce the oscillation marks by achieving soft contact of molten metal with the mold surface, alternating magnetic field is applied to the surface of molten metal. However, if the magnetic field strength becomes too strong, the melt flow induced by the magnetic field. causes the instability of the molten metal surface, which has also the bad influence on the slab quality. Therefore, it is very important to choose the optimal position of the inductor coil and the optimal level of electric power to minimize the surface defects. In the present work, as a first step toward the optimization problem of the process, numerical studies are performed to investigate the effects of coil position and the electric power level on the meniscus shape and the flow field. As numerical tools, the boundary integral equation method(BIEM) is used for the magnetic field analysis and the finite difference method (FDM) with orthogonal grid generation is used for the flow analysis.

  • PDF

Demagnetization to Induce Vertical Magnetization in a Military Vessel (함정에 수직자화를 부여하기 위한 탈자)

  • Kim, Young-Hak
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.1109-1112
    • /
    • 2015
  • A milatary ship without degaussing coil has a vertical magnetization to compensate magnetization induced by the vertical magnetic field component of earth magnetic field during demagnetization process. Flash D is very useful to acquire vertical magnetization. However this is hard to predict vertical magnetization. This experiment was investicated on another method, which used the only vertical bias magentic field. The specimens were prepared by thin Zn coated steel sheet with a thickness of 0.15mm. The shapes of 3 specimes was rectangular, triangular and circular cylinders. These shapes were corresponded to the shapes of bow, mid and stern of a vessel. Through FEM analysis, the difference of magnetic signatures for these specimens was recognized and the residual magnetization curve was measured. magnetic field was generated by a solenoid coil and magnetic signature was measured by a magnetic field sensor. A linearity between a vertical bias magnetic field and a vertical manetzation existed and the vertical magnetization of a miltary vessel was predicted by the linearity.

  • PDF

Implementation of Wireless Power Transfer Circuit by Using Magnetic Resonant Coupling Method

  • Lho, Young-Hwan
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.306-309
    • /
    • 2019
  • Wireless charging is a technology of transmitting power through an air gap to an electrical load for the purpose of energy dissemination. Compared to traditional charging with code, wireless power charging has many benefits of avoiding the hassle from connecting cables, rendering the design and fabrication of much smaller devices without the attachment of batteries, providing flexibility for devices, and enhancing energy efficiency, etc. A transmitting coil and a receiving coil for inductive coupling or magnetic resonant coupling methods are available for the near field techniques, but are not for the far field one. In this paper, the wireless power transfer (WPT) circuit by using magnetic resonant coupling method with a resonant frequency of 13.45 Mhz for the low power system is implemented to measure the power transmission efficiency in terms of mutual distance and omnidirectional angles of receiver.

The Development of Popular type Domestic Superconducting MRI Magnet with Middle Magnetic Field Range (중자장급 보급형 국산 초전도 MRI 마그네트 개발)

  • Bae, J.H.;Ko, R.K.;Sim, K.D.;Jin, H.B.;Cho, J.W.;Lee, E.Y.;Kwon, Y.K.;Ryu, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.22-25
    • /
    • 2001
  • The research results on the superconducting magnet for whole body MRI are presented. The magnet consists of main coil with 6 solenoid coils, shielding coil with 2 solenoid coils and 6 sets of cryogenic shim coil. The ferromagnetic shim assembly is installed on the inside wall of the room temperature bore for shimming inhomogeneous field components generated due to manufacturing tolerances, installation misalignments and external ferromagnetic materials near the magnet. Also, the magnet is enclosed with the horizontal type cryostat with 80cm room temperature bore to keep the magnet under the operating temperature. The magnetic field distributions within the imaging volume were measured by the NMR field mapping system. Through the test, the central field of magnet was 1.5 Tesla and the field homogeneity of 9.3 ppm has been obtained on 40cm DSV(the diameter of spherical volume) and using this magnet, comparatively good images for human body, fruits and water phantoms have been achieved.

  • PDF