• Title/Summary/Keyword: magnetic curves

Search Result 254, Processing Time 0.025 seconds

Structural Phase Transition, Electronic Structure, and Magnetic Properties of Sol-gel-prepared Inverse-spinel Nickel-ferrites Thin Films

  • Kim, Kwang Joo;Kim, Min Hwan;Kim, Chul Sung
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.111-115
    • /
    • 2014
  • X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and vibrating sample magnetometry (VSM) were used to investigate the influence of Ni ions on the structural, electronic, and magnetic properties of nickel-ferrites ($Ni_xFe_{3-x}O_4$). Spinel $Ni_xFe_{3-x}O_4$ ($x{\leq}0.96$) samples were prepared as polycrystalline thin films on $Al_2O_3$ (0001) substrates, using a sol-gel method. XRD patterns of the nickel-ferrites indicate that as the Ni composition increases (x > 0.3), a structural phase transition takes place from cubic to tetragonal lattice. The XPS results imply that the Ni ions in $Ni_xFe_{3-x}O_4$ substitute for the octahedral sites of the spinel lattice, mostly with the ionic valence of +2. The minority-spin d-electrons of the $Ni^{2+}$ ions are mainly distributed below the Fermi level ($E_F$), at around 3 eV; while those of the $Fe^{2+}$ ions are distributed closer to $E_F$ (~1 eV below $E_F$). The magnetic hysteresis curves of the $Ni_xFe_{3-x}O_4$ films measured by VSM show that as x increases, the saturation magnetization ($M_s$) linearly decreases. The decreasing trend is primarily attributable to the decrease in net spin magnetic moment, by the $Ni^{2+}$ ($2{\mu}_B$) substitution for octahedral $Fe^{2+}$ ($4{\mu}_B$) site.

Clinical Utility of Liver Stiffness Measurements on Magnetic Resonance Elastrography in Patients with Hepatocellular Carcinoma Treated with Radiofrequency Ablation

  • Kim, Ji Eun;Lee, Jeong Min;Lee, Dong Ho;Chang, Won;Yoon, Jeong Hee;Han, Joon Goo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.4
    • /
    • pp.231-240
    • /
    • 2016
  • Purpose: To determine whether liver stiffness (LS) measured by magnetic resonance elastography (MRE) can predict the outcome of radiofrequency ablation (RFA) in hepatocellular carcinoma (HCC) patients. Materials and Methods: A total of 107 patients with Child-Pugh class A liver function who were treated with RFA for single HCC and who had undergone a gradient-echo MRE within 6 months before RFA were included. We evaluated the relationship between the LS values and the ablation volume, local tumor progression (LTP), and intrahepatic distant recurrence (IDR). We also constructed receiver operating characteristic (ROC) curves to examine the role of LS in predicting liver function deterioration, which was defined as an increase of Child-Pugh score by one point or more at 1 year after RFA. Results: There was no significant correlation between LS and ablation volume, and neither time to LTP nor IDR was associated with LS. Among the 66 patients who did not have recurrence 1 year after RFA, 5 patients (7.6%) developed liver function deterioration. A high LS value was significantly associated with development of liver function deterioration after RFA and the area under the ROC curve was 0.764 (95% CI 0.598-0.929, P = 0.003). Conclusion: LS measured by MRE could not predict ablation volume and tumor recurrence. However, high LS values were significantly associated with development of liver function deterioration.

Realization of full magnetoelectric control at room temperature

  • Chun, Sae-Hwan;Chai, Yi-Sheng;Oh, Yoon-Seok;Kim, In-Gyu;Jeon, Byung-Gu;Kim, Han-Bit;Jeon, Byeong-Jo;Haam, S.Y.;Chung, Jae-Ho;Park, Jae-Hoon;Kim, Kee-Hoon
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2011.12a
    • /
    • pp.101-101
    • /
    • 2011
  • The control of magnetization by an electric field at room temperature remains as one of great challenges in materials science. Multiferroics, in which magnetism and ferroelectricity coexist and couple to each other, could be the most plausible candidate to realize this long-sought capability. While recent intensive research on the multiferroics has made significant progress in sensitive, magnetic control of electric polarization, the electrical control of magnetization, the converse effect, has been observed only in a limited range far below room temperature. Here we demonstrate at room temperature the control of both electric polarization by a magnetic field and magnetization by an electric field in a multiferroic hexaferrite. The electric polarization rapidly increases in a magnetic field as low as 5 mT and the magnetoelectric susceptibility reaches up to 3200 ps/m, the highest value in single phase materials. The magnetization is also modulated up to 0.34 mB per formula unit in an electric field of 1.14 MV/m. Furthermore, this compound allows nonvolatile, magnetoelectric reading- and writing-operations entirely at room temperature. Four different magnetic/electric field writing conditions generate repeatable, distinct M versus E curves without dissipation, offering an unprecedented opportunity for a multi-bit memory or a spintronic device applications.

  • PDF

An NMR Study on Internal Rotation of $CH_3$ Group in 1,1,1-Trichloroethane

  • Hyung Namgoong;Kim, Joa-Jin;Lee, Jo-Woong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.4 no.1
    • /
    • pp.29-40
    • /
    • 2000
  • Coupled carbon-13 relaxation study of 1,1,1-trichloroethane dissolved in DMSO has been performed to gain some crucial insight into the dynamics of methyl group in this compound. For this purpose the relaxation behaviors of several observable magnetization modes for CH3 spin system generated by various perturbing pulse sequences have been carefully investigated and various dipolar spectral densities were estimated by nonlinear numerical fittings of the observed data with the relaxation curves, which were then employed to determine the three principal values for the diffusion tensor for end-over-end molecular rotation as well as internal rotational parameters of methyl group. In this process we could uniquely determine two correlation times $\tau$int(1) and $\tau$int(2) which give valuable information on internal rotor dynamics and thus obtained data were interpreted on the basis of various proposed models for internal rotation. compound undergoes three-fold jumps at 25$^{\circ}$. The fact that the ratio $\tau$int(1) / $\tau$int(2) is close to 1.0 may be interpreted as indicating that methyl group in this C.

  • PDF

Design of mobile Radio Frequency Identification (m-RFID) antenna (Mobile RFID (Radio Frequency Identification) 용 안테나 계)

  • Kim, Yong-Jin;Jung, Chang-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3608-3613
    • /
    • 2009
  • In this paper, we propose a mobile Radio Frequency Identification antenna for mobile hand set. The proposed antenna with directive radiation characteristics based on combination of electric-magnetic radiators can be installed in the mobile hand-set. The combination of PIFA antenna for electric radiator and loop antenna for magnetic radiator is presented and designed for료 m-RFID reader system. Target frequency band is 900-MHz band. and desired gain is 4dBi. The antenna is simulated using Ansoft HFSS software and shows expected results. The antenna is also manufactured using FR4-epoxy circuit board (h=1 mm, $\varepsilon_{\tau}=4.4$). There are good agreements between the simulated and measured VSWR curves and radiation characteristics.

Fault Current Limiting and Hysteresys Characteristics of a SFCL using Magnetic Coupling of Two Coils on the Iron Core with an Air-Gap (공극이 도입된 철심에 코일의 자기결합을 이용한 초전도한류기의 고장전류 제한 및 히스테리시스 특성)

  • Lim, Sung-Hun;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.2
    • /
    • pp.137-142
    • /
    • 2011
  • In this paper, the fault current limiting and the hysteresys characteristics of a superconducting fault current limiter (SFCL) using magnetic coupling of two coils on the iron core with an air-gap were analyzed. The introduction of the air-gap in the SFCL with magnetically coupled two coils can suppress the saturation of the iron-core and, on the other hand, make the limiting impedance of the SFCL decreased, which results from the increase of the exciting current. To analyze the effect of the aig-gap on the fault current limiting characteristics of the SFCL, the hysteresys curves of the iron core comprising the SFCL were derived from the short-circuit experiment and the variation in the voltage-current trace of the SFCL during the fault period was analyzed. Through the comparison with the current limiting characteristics of the SFCL without air-gap, the air-gap could be confirmed to contribute to the suppression of the iron core's saturation through the increase of the SFCL's burden from the short-circuit current.

Structural Studies of Copper(II)-Hippuryl-L-histidyl-L-leucine(HHL) Complex by NMR Methods

  • Lee Seong-Ran;Jun Ji-Hyun;Won Ho-Shik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.10 no.1
    • /
    • pp.115-125
    • /
    • 2006
  • Hippuryl-L-histidyl-L-leucine(HHL) is widely used as a substrate of angiotensin converting enzyme(ACE) cleaving the neurotransmitter angiotensin(I) to the octapeptide angiotensin(II). The structure of the substrate molecules should provide information regarding the geometric requirements of the ACE active site. For the purpose of determination of in vivo reaction, metallo(Cu, Zn)-HHL complexes were synthesized and the degree of complex formation were identified by MALDITOF, ESI mass spectrometric analysis. Tn addition, the pH-dependent species distribution curves were obtained by potentiometric titration. Nitrogen atoms of imidazole ring and oxygen atom of caboxylate groups in the peptide chain were observed to be participated in the metal complex formation. After purification of complexes further structural characterization were made by utilizing UV-Vis, electrochemical methods and NMR. Complete NMR signal assignments were carried out by using 2D-spectrum techniques COSY, TOCSY, NOESY, HETCOR. A complex that two imidazole and carboxylate groups are asymmetrically participating to coordination mode was predicted to the solution-state structure of $Cu(II)-HHL_2$ based on $^{13}C-NMR$ signal assignment and NOE information.

  • PDF

c-axis Transport Properties of $SmFeAsO_{0.85}$ Single Crystals ($SmFeAsO_{0.85}$ 단결정의 c-축 전도 특성)

  • Park, Jae-Hyun;Doh, Yong-Joo;Lee, Hyun-Sook;Cho, B.K.;Lee, Hu-Jong
    • Progress in Superconductivity
    • /
    • v.11 no.2
    • /
    • pp.118-122
    • /
    • 2010
  • Electrical transport properties were measured on $SmFeAsO_{0.85}$ single crystals along the c-axis for various temperatures and magnetic fields. For the measurements a mesa structure was fabricated on the surface of the single crystals. Samples showed a metallic temperature dependence of resistance and current-voltage curves without hysteretic multiple branch splitting that is usually observed in tunneling Josephson junctions. In addition, in ab-planar magnetic fields, samples did not show the Fraunhofer-type field modulation of the critical current. All these features indicate that the c-axis transport characteristics of $SmFeAsO_{0.85}$ single crystals are explained by the anisotropic bulk superconductivity rather than Josephson tunneling.

Vortex Dynamics of Superconducting Flux Flow Transistor in a Channel (채널부분의 초전도 자속 흐름 트랜지스터 볼텍스 동력학)

  • Ko, Seok-Cheol;Kang, Hyeong-Gon;Lim, Sung-Hun;Lee, Jong-Hwa;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.546-549
    • /
    • 2003
  • The principle of the superconducting vortex flow transistor (SVFT) is based on control of the Abrikosov vortex flowing along a channel. The induced voltage is controlled by a bias current and a control current, instead of external magnetic field. The device is composed of parallel weak links with a nearby current control line. We explained the process to get an I-V characteristic equation and described the method to induce the external and internal magnetic field by the Biot-Savarts law in this paper. The equation can be used to predict the I-V curves for fabricated device. From the equation we demonstrated that the current-voltage characteristics were changed with input parameters. I-V characteristics were simulated to analyze a SVFT with multi-channel by a Matlab program.

  • PDF

Measurement of magnetic kerr rotation and faraday fotation angles by polarization modulation method (편광 변조 방법에 의한 자기 Kerr 회전각 및 Faraday 회전각 측정)

  • 이용호;이상수;이용호
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.105-110
    • /
    • 1992
  • In order to measure fine rotation angles by magneto-optic effects of magneto-optical recording thin films, a polarization modulation method is used. In the experiment, the polarization of laser (He-Ne laser) beam is modulated by a Faraday rotator and the amplified modulated signals are selectively detected by phase sensitive detector. The magnetic Kerr rotation and Faraday rotation hysteresis loops are investigated by this method for thermally evaporated amorphous TbFeCo thin films and RF sputtered garnet thin films. Rotation angles about $0.25^{\circ}$ are measured easily from TaFeCo thin films. In the case of longitudinal Kerr rotation, very small rotation angle of $2.5\times10^{-3^\circ}$ is measured with good accuracy of the measurement (about $1\times10^{-3^\circ}$). And it is found that each thin films have the hysteresis curves of high coercivity and good squareness.

  • PDF