• Title/Summary/Keyword: magnetic control

Search Result 2,256, Processing Time 0.03 seconds

Analysis of Magnetic Marker for Autonomous Vehicle Guidance System Using 3-axis Magnetic Sensor

  • Lim, Dae-Young;Ryoo, Young-Jae;Kim, Eui-Sun;Mok, Jei-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1460-1463
    • /
    • 2005
  • In this paper, analysis of magnetic marker for autonomous vehicle guidance system using 3-axis magnetic sensor propose. Position sensing is an important an estimation system of vehicle position and orientation on magnetic lane, which is a parameter of the steering controller for automated lane following is described. To verify that the magnetic dipole model could be applied to a magnetic unit paved in roadway, the analysis of the data 3-axis magnetic field measured experimentally.

  • PDF

Position Control of Capsule Filled with Magnetic Fluid for Targeted Drug Delivery System (지적투약시스템을 위한 자성유체 캡슐의 위치 제어)

  • Ahn Chang-ho;Nam Yun-Joo;Park Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1166-1173
    • /
    • 2004
  • In this paper, in order to apply magnetic fluid with superparamagnetic property as the substitute of ferromagnetic materials, physical properties of magnetic fluid are investigated. A targeted drug delivery system using a capsule filled magnetic fluid is proposed where a magnetic fluid capsule and cylinders are considered as a drug and vital organs, respectively. The dynamic governing equation of this system first is derived. Fluid viscosity, clearance between a cylinder and a magnetic fluid capsule, and levitation height with respect to different cylinder height are considered as major parameters to evaluate dynamic characteristics of the system. The experiments and simulations for the position control of the magnetic fluid capsule in various cylinders are conducted using PID controller. The results show that magnetic fluid with the superparamagnetic property can be applied to a targeted drug delivery system.

Development of Magnetic Torquer for Satellite Attitude Control (인공위성 자세제어용 Magnetic Torquer 개발)

  • Son, D.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.2
    • /
    • pp.54-57
    • /
    • 2008
  • Magnetic torquer, which uses torque between magnetic dipole moment and earth magnetic field, has been used to control attitude of satellites. In this work, we developed a magnetic torquer for small scientific satellite and test under environmental conditions of the satellite launching and orbital motion have been carried out. The developed magnetic torquer shows saturation magnetic dipole moment of $15Am^2$, linearity of 0.3 % in the range of ${\pm}12Am^2$, mass of 0.46 kg, and power consumption of 1 Watt at magnetic dipole moment of $10Am^2$.

Digital Controller Design of a Magnetic Bearing System for High Speed Milling Spindle (고속 밀링 주축용 자기베어링 시스템의 디지털 제어기 설계)

  • 노승국;경진호;박종권
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.398-403
    • /
    • 2004
  • The demand of high speed machining is increasing because the high speed cutting providers high efficiency of process, short process time, improved metal removal capacity and better surface finish. Active magnetic bearings allow much high surface speed than conventional ball bearings and therefore greatly suitable for high speed cutting. The automatic control concept of magnetic bearing system provides ability of intelligent control of spindle system to increase accuracy and flexibility by means of adaptive vibration control. This paper describes a design and development of a milling spindle system which includes built-in motor with power 5.5㎾ and maximum speed 70,000rpm, HSK-32C tool holer and active magnetic bearing system. Magnetic actuators are designed for satisfying static load condition. The Performances of manufactured spindle system was examined for its static and dynamic stiffness, load capacity, and rotational accuracy. This spindle was run up to 70,000 rpm stably, which is 3.5 million DmN.

  • PDF

Control of Magnetic Flywheel System by Neuro-Fuzzy Logic (뉴로-퍼지를 이용한 플라이휠 제어에 관한 연구)

  • Yang Won-Seok;Kim Young-Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.90-97
    • /
    • 2005
  • Magnetic flywheel system utilizes a magnetic bearing, which is able to support the shaft without mechanical contacts, and also it is able to control rotational vibration. Magnetic flywheel system is composed of position sensors, a digital controller, actuating amplifiers, an electromagnet and a flywheel. This work applies the neuro-fuzzy control algorithm to control the vibration of a magnetic flywheel system. It proposes the design skill of an optimal controller when the system has structured uncertainty and unstructured uncertainty, i.e. it has a difficulty in extracting the exact mathematical model. Inhibitory action of vibration was verified at the specified rotating speed. Unbalance response, a serious problem in rotating machinery, is improved by using a magnetic bearing with neuro-fuzzy algorithm.

Spreader Pose Control Using Dual-electric Compasses (Dual compasses를 이용한 스프레더의 자세 제어)

  • Han, Sun-Sin;Jeong, Hee-Seok;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.861-867
    • /
    • 2007
  • A spreader pose control system using dual-electric compasses has been implemented by measuring the skew angle of the spreader with dual-electric compasses. In the conventional spreader pose measurement, CCD cameras, laser sensors or tilt sensors are mostly used. However those sensors are not only sensitive to the weather and disturbances but also expensive to build the system. To overcome the shortcomings, an inexpensive and efficient system to control the spreader pose has been implemented using the dual-magnetic compasses. Since the spreader iron-structures are noise sources to the magnetic compass, it is not considered to use the magnetic compass to measure the orientation of the spreader. An algorithm to eliminate the interferences of metal structures to the dual compasses has been developed in this paper. The 10:1 reduction model of a spreader control system is implemented and the control performance is demonstrated to show the effectiveness of the dual-magnetic compasses proposed in this research.

Development of Improved Semi-Active Damper Using EMRF (EMRF를 이용한 개선된 Semi-Active Damper 개발)

  • Jeon, Seung gon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.149-156
    • /
    • 2022
  • Magneto-Rheological Fluid (MRF) is a functional fluid in which flow characteristics change into magnetic force due to its magnetic particles. When the semi-active control device does not use MRF for a long time, precipitation of magnetic particles and abnormal control force occur. Thus, Electro Magneto-Rheological Fluid (EMRF), which improves the precipitation of magnetic particles for MRF and exhibits existing control performance, was developed in this study. First, the optimal mix proportion ratio was selected by conducting a precipitation experiment and a controlled force test by varying the content of grease based on the existing MRF components. Also, EMRF was applied to the shear-type damper to evaluate the control performance when applied to the control device. The cylinder-type damper was developed to apply to the structure, and control performance evaluation was conducted. The result confirmed that the precipitation of the magnetic particles was improved, while the damper using EMRF exhibited excellent control performance.

A Study on Air-gap Control for Transverse Flux Permanent Magnet Type Magnetic Levitation Electromagnet System (횡자속 영구자석형 자기부상전자석 시스템의 공극제어에 관한 연구)

  • Jae-Won Lee;Myeong-Jae Kim;Seon-Hwan Hwang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1127-1134
    • /
    • 2023
  • In this paper, we proposes a study on air gap control for magnetic levitation of transverse flux permanent magnet electromagnets. In general, mechanical systems have a high failure rate of bearings. Bearings in particular are problematic because they have high surface wear rate and degradations. To solve this problem, replacing the bearing with a magnetic levitation electromagnet system can provide lightweight and efficiency improvements. However, precise air gap control is essential to control the magnetic levitation electromagnet system. Therefore, in this paper, we identify the instable cause of gap control through a mathematical modeling and verify through experiment a control algorithm that can use compensation.

A Study of Nondestructive Evaluation Using Scan type Magnetic Camera

  • Hwang, Ji-Seong;Lee, Jin-Yi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1830-1835
    • /
    • 2005
  • It is important to estimate the distribution of intensity of a magnetic field for application of magnetic method to industrial nondestructive evaluation. Magnetic camera provides the distribution of a quantitative magnetic field with homogeneous lift-off and same spatial resolution. And it is possible to interpret the distribution of the magnetic field when the dipole model is introduced. This study introduces the numerical and experimental considering of the quantitative evaluation of several size and shapes of the cracks using the magnetic field images of the scan type magnetic camera.

  • PDF

The review of IFMFC (International Forum on Magnetic Force Control) -The accumulated knowledge and experience of the magnetic force control with IFMFC

  • Watanabe, Tsuneo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.2
    • /
    • pp.20-23
    • /
    • 2018
  • The practical use of superconducting magnets is limited to medical equipment, energy equipment and the like. Therefore, it does not fully utilize the superior features of superconducting magnet or magnetic force. In order to overcome this blockage condition, The international Forum on Magnetic Force Control (IFMFC) was launched in Tokyo in 2010 by the magnetic separation researchers in Japan, Korea and China. The policy is to hold around the country every year, to apply the application to the engineering field of magnetic force utilization and information exchange about the development of applied science to mutual visit of researchers and to develop the application field of superconducting magnets in particular. The main object is to review the field of application of magnetic force with respect to published papers at 8 IFMFCs, and to introduce the trend of research forum utilizing strong magnetic force which is rare in the world. The United Nations is asking each country to achieve Corporate Social Responsibility (CSR) targets for 2030. This IFMFC review will be utilized in this field.