• Title/Summary/Keyword: magnetic behavior

Search Result 792, Processing Time 0.026 seconds

Imaging of Magnetic Nanoparticles Added in Transformer Oil According to the Electric and Magnetic Fields

  • Lee, Jong-Cheol;Lee, Sang-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.219-220
    • /
    • 2013
  • The phenomenology of liquid breakdown has been an area of interest for many years but is still not fully understood. Moreover, it was known that the behavior of magnetic nanoparticles in transformer oil could affect the dielectric breakdown voltage positively or negatively. In this study, we have imaged the magnetic nanoparticles in a transformer oil in-situ using an optical microscopic set-up and a microchannel according to the electric and magnetic fields applied. And we have calculated numerically dielectrophoresis and magnetophoresis forces, which must be the driving mechanisms to move magnetic nanoparticles in the fluid. It was found that when the electric field is applied the magnetic nanoparticles in the fluid experience an electrical force directed toward the place of maximum electric field strength. And when the external magnetic field is applied, the magnetic nanoparticles form long chains oriented along the direction of the field.

  • PDF

A Fundamental Study on the Electron Behavior and Optimum Condition for the Formation of a Neutral Loop Discharge Plasma (Neutral Loop Discharge 플라즈마의 전자거동과 최적조건에 관한 기초적 연구)

  • Sung, Youl-Moon;Kim, Jong-Kyung;Park, Chung-Hoo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.6
    • /
    • pp.281-287
    • /
    • 2001
  • In order to obtain guidelines for design and operation of a new plasma source by a magnetic neutral loop discharge(NLD), the electron behavior was studied experimentally and numerically. Experimentally, the magnetic field gradient was changed over a wide range, and it was found that there existed an optimum value for efficient plasma production. Analyses of the electron behavior were performed using a model that included effects of a three dimensional electromagnetic field configuration considering the spatial decay of the electric field, and the limitation to the motion of electron caused by the existence of walls and thus electron loss at wall surfaces. These three dimensional factors were found to explain the existence of the optimum magnetic field gradient. It was shown that the L dependence of the plasma production efficiency was firstly decided by the finite decay length of the electric field strength, which was further modified by electron elastic collisions with neutral atoms which drove the electron to walls. The latter effect tends to reduce the optimum value of L.

  • PDF

Cut out effect on nonlinear post-buckling behavior of FG-CNTRC micro plate subjected to magnetic field via FSDT

  • Jamali, M.;Shojaee, T.;Mohammadi, B.;Kolahchi, R.
    • Advances in nano research
    • /
    • v.7 no.6
    • /
    • pp.405-417
    • /
    • 2019
  • This research is devoted to study post-buckling analysis of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) micro plate with cut out subjected to magnetic field and resting on elastic medium. The basic formulation of plate is based on first order shear deformation theory (FSDT) and the material properties of FG-CNTRCs are presumed to be changed through the thickness direction, and are assumed based on rule of mixture; moreover, nonlocal Eringen's theory is applied to consider the size-dependent effect. It is considered that the system is embedded in elastic medium and subjected to longitudinal magnetic field. Energy approach, domain decomposition and Rayleigh-Ritz methods in conjunction with Newton-Raphson iterative technique are employed to trace the post-buckling paths of FG-CNTRC micro cut out plate. The influence of some important parameters such as small scale effect, cut out dimension, different types of FG distributions of CNTs, volume fraction of CNTs, aspect ratio of plate, magnitude of magnetic field, elastic medium and biaxial load on the post-buckling behavior of system are calculated. With respect to results, it is concluded that the aspect ratio and length of square cut out have negative effect on post-buckling response of micro composite plate. Furthermore, existence of CNTs in system causes improvement in the post-buckling behavior of plate and different distributions of CNTs in plate have diverse response. Meanwhile, nonlocal parameter and biaxial compression load on the plate has negative effect on post-buckling response. In addition, imposing magnetic field increases the post-buckling load of the microstructure.

Effects of Applied Magnetic Field on the Electrical Properties of High Tc Superconductor (외부자장에 의한 초전도체의 전기적 특성 변화 기구)

  • Lee Sang-Heon
    • Journal of Powder Materials
    • /
    • v.13 no.3 s.56
    • /
    • pp.217-222
    • /
    • 2006
  • The relationship between electrical properties of superconductor and externally applied magnetic field was studied to develop a magnetic field sensor. The electrical resistance of the superconductor was increased by applying external magnetic field and even after removal of the magnetic field. This behavior was related to the magnetic flux trapped in the superconductor, which penetrated through the material by the external magnetic field. Some portion of the superconductor was changed to a normal state by the trapped magnetic flux. The appearance of the normal state yielded to enhance the electrical resistance.

Magnetic Properties of TmFe2O4

  • Kim, J.;Lee, B.W.
    • Journal of Magnetics
    • /
    • v.15 no.1
    • /
    • pp.29-31
    • /
    • 2010
  • We studied the magnetic properties of $TmFe_2O_4$. The magnetization measurements revealed the magnetic ordering of Fe spins at around 240 K. The difference between zero-field-cooled (ZFC) and field-cooled (FC) magnetization was close to the thermoremanent magnetization (TRM), indicating the glass behavior exhibited by this material.

Aerosol Synthesis and Growth Mechanism of Magnetic Iron Nanoparticles

  • Tolochko, O.V.;Vasilieva, E.S.;Kim, D.;Lee, D.W.;Kim, B.K.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.446-447
    • /
    • 2006
  • Magnetic oxide-coated iron nanoparticles with the mean size ranging from 6 to 75 nm were synthesized by aerosol method using iron carbonyl as a precursor under the flowing inert gas atmosphere. Oxide shells were formed by passivation of asprepared iron particles. The influence of experimental parameters on the nanoparticles' microstructure, phase composition and growth behavior as well as magnetic properties were investigated and discussed in this study.

  • PDF

Dependence of External Magnetic Field in the Matrix-Type SFCL with the Separated or the Integrated Reactors (분리형과 일체형 리액터에 따른 매트릭스형 초전도 한류기의 외부자장 의존성 연구)

  • Cho, Yong-Sun;Choi, Hyo-Sang;Jung, Byoung-Ik;Go, Sung-Pil
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.880-884
    • /
    • 2011
  • The matrix-type superconducting fault current limiter (MSFCL) consists of the trigger and current-limiting parts. The trigger part with reactors connected in parallel improves the quenching characteristics by applying the external magnetic field into the superconducting units. The current-limiting part with superconducting units connected in parallel and shunt reactors connected in series limit the fault current when the fault occurs. We developed the integrated reactor with the trigger and the current-limiting parts to apply high external magnetic field into the superconducting units. This was composed of a superconducting unit for the trigger part and two superconducting units for the current-limiting parts. We confirmed that the external magnetic field generated in the MSFCL with an integrated reactor was larger than that of the MSFCL with the separated reactors. So the differences of voltages generated between superconducting units were decreased in the difference according to the increment of the applied voltage. The whole magnitude of the SFCL was reduced because the volume of an integrated reactor could be reduced by one-third than that of the separated reactors. We confirmed that the critical behavior between the superconducting units in the MSFCL with an integrated reactor was more improved than that of the MSFCL with the separated reactors.