• Title/Summary/Keyword: magnesium particles

Search Result 104, Processing Time 0.031 seconds

The Characterization of Metal Silicon and Compacts for the Nitridation (질화반응용 금속규소 및 그 Compacts의 Characterization(Densification of Silocon Nitride 1보))

  • 박금철;최상욱
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.3
    • /
    • pp.211-216
    • /
    • 1983
  • This work aims at characterizing silicon grains and its compacts. In order to remove iron silicon grains were washed with 5N hydrochloride at 60-7$0^{\circ}C$ for 170 hrs, and then followed the chemical analysis by atomic absorption spectrophotometer X-ray diffraction analysis SEM observation and specific surface area determination by B. E. T. Mixtures of graded silicon particles with two or three different sizes were made into packings by mechanical vibration. The mixtures were used to make compacts with 10 mm in diameter and 70mm in length by isostatically pressing at 1, 208 kg/$cm^2$ (20 kpsi) and 4, 255kg/$cm^2$ (60 kpsi) respectively. Bulk densities of packings and compacts were measured. A slip made of magnesium nitrate solution and fine silicon particles was spray-dried and then decomposed at 30$0^{\circ}C$ for the purpose of coating the uniform layer of magnesium oxide on the surface of particles. The results obtained are as follows: (1) About two thirds of iron content could be removed from silicon by washing silicon powders with hydrochloride. (2) Uniform layer of magnesium oxide on the surface of silicon could be prepared by spray-drying suspension and by decomposing it. (3) B. E. T. specific surface area of fine silicon particles was 2, 826.753$m^3$/kg. (4) In the binary system with two sizes of 40-53$\mu\textrm{m}$ particles and <10$\mu\textrm{m}$ particles the maximum bulk density of packing was 55% of theoretical value and that of compacts made at the pressure of 4, 255 kg./$cm^2$ (60 kpsi) was 73% of theoretical value. (5) In the ternary system with three sizes the maximum bulk density of packing was 1.43 g/$cm^3$and that of compacts was 1.80g/$cm^3$which is equivalent to 77.6% of theoretical value. The composition of the closest compact was consisted of 50% of 40-53$\mu\textrm{m}$ particles 20% of 10-30$\mu\textrm{m}$ particles and 30% of <10$\mu\textrm{m}$ parti-cles.

  • PDF

Characteristic of Hyperfine Magnesioferrite Particles Possessing Shape Anisotropy

  • Going Yim;Chai Suck Yim
    • The Journal of Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.99-103
    • /
    • 2005
  • The ferrimagnetic resonance technique, with the inclusion of shaper anisotropy effects, was used to obtain information about the early stages in the precipitation of magnesium ferrite from iron-doped magnesia. The very small magnesioferrite particles were produced by precipitation method from solid solution of iron ion in single crystal magnesia. The temperature dependence of the resonance anisotropy field for a coherent assembly of hyperfine magnesium ferrite precipitates was investigated in the range 100~400K. The results are interpreted in terms of the shape anisotropy of the precipitates.

  • PDF

Preparation of Ultrafine C/N Controled TiCxNy Powders by Magnesium Reduction (마그네슘환원에 의한 C/N 조성제어 초미립 TiCxNy 분말 합성)

  • Lee, Dong-Won;Kim, Byoung-Kee;Yun, Jung-Yeul;Yu, Ji-Hoon;Kim, Yong-Jin
    • Journal of Powder Materials
    • /
    • v.17 no.2
    • /
    • pp.142-147
    • /
    • 2010
  • The ultrafine titanium carbonitride ($TiC_xN_y$) particles below 100 nm in mean size, including various carbon and nitrogen contents (x=0.55~0.9, y=0.1~0.5), were successfully synthesized by new Mg-thermal reduction process. Nanostructured sub-stoichiometric titanium carbide ($TiC_x$) particles were initially produced by the magnesium reduction of gaseous $TiCl_4+x/2C_2Cl_4$ at $890^{\circ}C$ and post heat treatments in vacuum were performed for 2 hrs to remove residual magnesium and magnesium chloride mixed with $TiC_x$. Finally, well C/N-controled $TiC_xN_y$ phases were successfully produced by nitrification heat treatment under normal $N_2$ gas atmosphere at $1150^{\circ}C$ for 2 hrs. The values of purity, mean particle size and oxygen content of produced particles were about 99.3%, 100 nm and 0.2 wt.%, respectively.

Synthesis of Ultrafine and Less Agglomerated TiCN Powders by Magnesiothermic Reduction (마그네슘 열환원에 의한 저응집 초미립 TiCN 분말합성)

  • Lee, Dong-Won
    • Journal of Powder Materials
    • /
    • v.19 no.5
    • /
    • pp.356-361
    • /
    • 2012
  • The ultra-fine and less agglomerated titanium carbonitride particles were successfully synthesized by magnesiothermic reduction with low feeding rate of $TiCl_4+1/4C_2Cl_4$ solution. The sub-stoichiometric titanium carbide ($TiC_{0.5{\sim}0.6}$) particles were produced by reduction of chlorine component by liquid magnesium at $800^{\circ}C$ of gaseous $TiCl_4+1/4C_2Cl_4$ and the heat treatments in vacuum were performed for 5 hours to remove the residual magnesium and magnesium chloride mixed with produced $TiC_{{\sim}0.5}$. The final $TiC_{{\sim}0.5}N_{0{\sim}0.5}$ particle with near 100 nm in mean size and high specific surface area of $65m^2/g$ was obtained by nitrification under nitrogen gas at $1,150^{\circ}C$ for 2 hrs.

Effect of Alloying Elements on Particulate Dispersion Behavior and Mechanical Properties in TiC Particulate Reinforced Magnesium Matrix Composites (TiC 입자강화 Mg 복합재료에 있어서 입자 분산거동 및 기계적 성질에 미치는 합금원소의 영향)

  • Lim, Suk-Won;Choh, Takao;Park, Yong-Jin
    • Journal of Korea Foundry Society
    • /
    • v.14 no.3
    • /
    • pp.240-247
    • /
    • 1994
  • TiC particulate reinforced magnesium matrix composites were fabricated by melt stirring method. The effect of alloying elements on TiC particulate dispersion into molten magnesium and mechanical properties were investigated. The incorporation time is defined as the time required for dispersion of solid particles into molten metal. The incorporation time of TiC particles into molten pure magnesium was remarkably shorter and the particulated dispersion was more uniform than that of pure aluminum which was reported previously. The incorporation time was, prolonged by the addition of Al, Bi, Ca, Ce, Pb, Sn or Zn. The tensile strength increased and elongation decreased by the addition of Cu or Sn into the matrices and composites. Although, the tensile strength of the matrices and composites increased by alloying with Ca or Ce, the maximum elongation was observed at a content of about 1% for the matrices. By alloying with Zn, the tensile strength increased for the matrices and composites, but the elongation of the matrices increased. The pure magnesium and its alloy matrix composites reinforced with 20vol% TiC have the tensile strength of about 400MPa. This value is compared with the tensile strength of SiC whisker reinforced magnesium matrix composites fabricated by liquid infiltration method at the same volume fraction. There fore, the melt strirring method which has the advantages of simple process is considered to be efficient in fabricating magnesium matrix composites.

  • PDF

Synthesis and Characteristics of Magnesium Hydroxide Group Flame Retardant for Polymer Addtives (고분자 첨가제인 난연제로서의 수산화마그네슘계 물질의 합성과 특성)

  • Lee, Dong-Kyu;Kang, Kuk-Hyoun;Lee, Jin-Hwa
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.385-393
    • /
    • 2009
  • Different types magnesium hydroxide groups have been obtained using the hydrothermal precipitation technique from magnesium sulfate and calcium carbonate solution. The Mg atom coordinated around O atom of ${SO_4}^{2-}$ in another layer to form a multi-layer structure crystal. The influence of synthesis parameters on the morphological characteristics and size of magnesium hydroxide groups precipitated in aqueous were investigated such as different of additive and pH. Magnesium hydroxide groups were decomposed gradually and converted finally to MgO particles after heated in air temperature up to $1050^{\circ}C$. The particle size and it's distribution morphology, crystal phase and thermal behavior of the samples were characterized through XRD, SEM, EDS, and TG/DTA.

Influence of ZrO2 Particulates on Corrosion Resistance of Magnesium Alloy Coated by Plasma Electrolytic Oxidation (플라즈마 전해산화 처리된 마그네슘 합금의 내부식성에 미치는 코팅층 내 지르코니아 입자 영향)

  • Namgung, Seung;Ko, Young Gun;Shin, Ki Ryong;Shin, Dong Hyuk
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.9
    • /
    • pp.813-818
    • /
    • 2010
  • In current automobile and electronic industries, the use of magnesium alloys where both energy and weight saving are attainable is increasing. Despite their light weight, there has been an inherent drawback arising from the surface vulnerable to be oxidized with ease, specifically under corrosive environments. To protect magnesium alloy from corrosion, the present work deals with the electrochemical response of the oxide layer on magnesium alloy specimen prepared by plasma electrolytic oxidation (PEO) method in an electrolyte with zirconia powder. Surface observation using scanning electron microscopy evidences that a number of zirconia particles are effectively incorporated into oxide layer. From the results of potentio-dynamic tests in 3.5 wt% NaCl solution, the PEO-treated sample containing zirconia particles shows better corrosion properties than that without zirconia, which is the result of zirconia incorporation into the coating layer. Corrosion resistance is also measured by utilizing salt spray tests for 120 hrs.

Ignition Temperature and Residence Time of Suspended Magnesium Particles (마그네슘 부유 분진의 입자 체류시간과 발화온도)

  • Han, Ou-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.3
    • /
    • pp.25-31
    • /
    • 2015
  • Effects of residence time on the MIT(Minimum Ignition Temperature) in suspended Mg particles are examined by using MIT experimental data and calculation results of terminal velocity. With increasing of the average particle diameter, we were able to identify that MIT of Mg dusts increased and the calculated residence time of particle decreased exponentially. Also, the influence on terminal velocity due to temperature increase increased slightly with increasing of average particle diameter.

Synthesis of Magnesium Hydroxide and Surface Modification by Sorbitol Surfactants (수산화마그네슘의 합성과 솔비톨계 계면활성제를 이용한 표면개질)

  • Kang, Kuk-Hyoun;Hyun, Mi-Ho;Ryu, Kun-Sung;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.92-100
    • /
    • 2014
  • Hydrophobic magnesium hydroxide [$Mg(OH)_2$] was modified by hydrothermal method using non-ionic sorbitol surfactant with Span series. Mganesium chloride [$MgCl_2$] and sodium hydroxide [NaOH] were used for synthesis of $Mg(OH)_2$. Also non-ionic surfactant were added as a stabilizer, dispersant and surface modifier. Addition of non-ionic surfactant was favourable to obtain small sized $Mg(OH)_2$ particles with better dispersibility and hydrophobic property of $Mg(OH)_2$ particles. The obtained product were characterized by particle size analysis(PSA), scanning electron microscope(SEM), energy dispersive spectroscopy(EDS), x-ray diffraction(XRD) and fourier transform infrared spectroscopy(FT-IR). The results show that the product are prepared with this method has a well hydrophobic properties and dispersity compared with unmodified $Mg(OH)_2$ particles. The improve properties of surface modified $Mg(OH)_2$ particles were also verified by similarity synthesizing under slightly different conditions.

The tensile deformation and fracture behavior of a magnesium alloy nanocomposite reinforced with nickel

  • Srivatsan, T.S.;Manigandan, K.;Godbole, C.;Paramsothy, M.;Gupta, M.
    • Advances in materials Research
    • /
    • v.1 no.3
    • /
    • pp.169-182
    • /
    • 2012
  • In this paper the intrinsic influence of micron-sized nickel particle reinforcements on microstructure, micro-hardness tensile properties and tensile fracture behavior of nano-alumina particle reinforced magnesium alloy AZ31 composite is presented and discussed. The unreinforced magnesium alloy (AZ31) and the reinforced nanocomposite counterpart (AZ31/1.5 vol.% $Al_2O_3$/1.5 vol.% Ni] were manufactured by solidification processing followed by hot extrusion. The elastic modulus and yield strength of the nickel particle-reinforced magnesium alloy nano-composite was higher than both the unreinforced magnesium alloy and the unreinforced magnesium alloy nanocomposite (AZ31/1.5 vol.% $Al_2O_3$). The ultimate tensile strength of the nickel particle reinforced composite was noticeably lower than both the unreinforced nano-composite and the monolithic alloy (AZ31). The ductility, quantified by elongation-to-failure, of the reinforced nanocomposite was noticeably higher than both the unreinforced nano-composite and the monolithic alloy. Tensile fracture behavior of this novel material was essentially normal to the far-field stress axis and revealed microscopic features reminiscent of the occurrence of locally ductile failure mechanisms at the fine microscopic level.