• Title/Summary/Keyword: magmatism

Search Result 57, Processing Time 0.026 seconds

Sm-Nd Isotopic Study of the Ogcheon Amphibolite, Korea: Priliminary Report (옥천 각섬암의 Sm-Nd 동위원소연구 : 예비보고서)

  • Kwon, Sung-Tack;Lan, Ching-Ying
    • Economic and Environmental Geology
    • /
    • v.24 no.3
    • /
    • pp.277-285
    • /
    • 1991
  • We applied Sm-Nd isotopic system to so-called amphibolites occurring within the Ogcheon group to provide constraints on the age of the metasedimentary rocks and to characterize tectonic environment of basaltic magmatism. An internal mineral isochron age of $677{\pm}91Ma({\sigma})$ was obtained from a coarse-grained, intrusive, amphibolite near Mungyeong. Considering previous studies on the age of the Ogcheon group, we interpret that the isochron represents either early metamorphic or emplacement age. The depositional age of the metasedimentary rocks intruded by the amphibolite would be prior to late Proterozoic. The present study and Cambro-Ordovician fossil evidences of previous workers suggest that both Precambrian and Phanerozoic rocks are present in the Ogcheon group. Positive ${\varepsilon}$ Nd values(+2.4 to +3.5) of four whole rocks indicate mantle origin for the amphibolite. These isotopic data, along with published immobile trace element data of Cluzel et al.(1989), strongly suggest that parental rocks of the amphibolite formed in an intraplate environment rather than in island arc or midocean ridge. The age and tectonic environment of amphibolites in the Ogcheon belt suggest that the basaltic magmatism may be related to the late Proterozoic break-up of a presumed supercontinent, but not to the Triassic(?) collision between North and South China continents.

  • PDF

SHRIMP U-Pb Age of the Early Jurassic Deformed Granites in the Aneui Quadrangle, SW Yeongnam Massif (영남육괴 남서부 안의도폭 지역 초기 쥬라기 변형 화강암류의 SHRIMP U-Pb 연대)

  • Seo, Jaehyeon;Song, Yong-Sun;Park, Kye-Hun
    • Economic and Environmental Geology
    • /
    • v.49 no.2
    • /
    • pp.147-153
    • /
    • 2016
  • SHRIMP U-Pb age determination was carried out for deformed granites in the Aneui quadrangle, SW Yeongnam Massif. Dating of zircons from a highly deformed mylonitic granite with banded structure and a relatively less deformed porphyritic to augenic granites, that were known as Precambrian gneisses, yielded the same age of ca. 195 Ma. On the basis of this result and previous age data, Early to Middle Mesozoic igneous activity around the Aneui area was interpreted as follows; Subduction-related granitic magmatism started with the intrusion of the Hamyang Granite in the middle Triassic (ca. 225-219 Ma) mainly in the west of the area and ended with syenitic intrusion at the end of Triassic period (ca, 220-210 Ma). After a relatively short period of quiescency, granitic magmatism restarted with the intrusion of magma forming deformed granites dated in this study at the Early Jurassic of ca. 195 Ma and continued to ca. 189 Ma and dioritic intrusion was associated around the late stage of granitic magmatism.

Late Cenozoic Metallogeny of Southwest Hokkaido, Japan

  • Watanabe, Yasushi
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.3-6
    • /
    • 2003
  • Southwest Hokkaido (Sapporo-Iwanai district) in the Northeast Japan arc (Fig. 1) is one of the best places to test the correlation among tectonic regime, stress field, magmatic style and hydrothermal mineralization. This paper reviews the Miocene to Pleistocene tectonic framework, geology, magmatic style and stress field of southwest Hokkaido, and correlates them with different types of deposits (Kuroko, epithermal base-metal and precious-metal). (omitted)

  • PDF

LA-ICP-MS U-Pb Zircon Age of the Granite Gneiss from Jeungsan-Pyeongwon Area of North Korea (북한 증산-평원지역 화강편마암의 LA-ICP-MS U-Pb 저콘 연대)

  • Song, Yong-Sun;Park, Kye-Hun;Lee, Ho-Sun;Lin, Cao;Yuji, Orihashi
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.171-179
    • /
    • 2009
  • LA-ICP-MS U-Pb zircon age was determined from the granite gneiss from Jeungsan-Pyeongwon area located to the west of Pyeongan Basin, North Korea, yielding concordant age of $1,873{\pm}19(2{\sigma})$Ma interpreted as Paleoproterozoic granitic magmatism. Considering relatively precise data reported recently using SHRIMP and LA-ICP-MS, ages around 1,870 Ma have been most frequently reported from Precambrian basement rocks of Korean peninsula, including Yeongnam, Gyeonggi, and Nangnim massifs altogether. Geologic events of this period are interpreted as not only granitic magmatism but also hightemperature regional metamorphism depending on their localities. The magmatic and regional metamorphic events of similar periods have also been reported from neighboring cratons of both North China and South China. Therefore, we need more data and efforts to decipher correlation between Precambrian basements between Korea and China.

Hydrothermal Alteration Related to Cretaceous Felsic Magmatism in the Gusi Mine, Southern Korea (전남 해남지역 구시광상의 화산활동에 수반된 열수변질작용 및 생성환경)

  • Moon, Hi-Soo;Roh, Yul;Kim, In-Joon;Song, Yungoo;Lee, Hyun Koo
    • Economic and Environmental Geology
    • /
    • v.24 no.1
    • /
    • pp.9-20
    • /
    • 1991
  • Gusi pyrophyllite deposit is located in the Haenam volcanic field in the southwestern part of the Korea Peninsula. This area is known for the occurrences of pyrophyllite, alunite and dickite. This volcanic field is composed of andesite, rhyolite and pyroclastic rocks of late Cretaceous age The pyroclastic rocks are hydrothermally altered to pyrophyllite and kaolin minerals forming the Gusi deposits. The hydrothermally altered rock can be classified into the following zones on the basis of their mineral assemblages: quartz, pyrophyllite, dickite and illite-smectite zones, from the centre to the margins of the alteration mass. Such mineral assemblages indicate that the country rocks, most of which are the lower Jagguri Tuff, were altered by strongly acidic hydrothermal solutions with high aqueous silica and potassium activity and that the formation temperature of pyrophyllite is higher than $265^{\circ}C$. The mechanism of the hydrothermal alteration is considered to be related to felsic magmatism.

  • PDF

K-Ar ages of the hydrothermal clay deposits and the surrounding igneous rocks in southwest Korea (한국 남서부의 열수점토광상과 주변암에 대한 K-Ar 연대 측정)

  • Kim In Joon;Nagao Keisuke
    • The Journal of the Petrological Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.58-70
    • /
    • 1992
  • From the K-Ar age determinations for the clay deposits and their surrounded rocks in southwest Korea, the ages of the ore formation in all clay deposits fall in very narrow range from 78.1 to 81.4 Ma. K-Ar ages of clay deposits are slightly younger than those of the Cretaceous volcanic rocks (Hwangsan Formation, 81.4 to 86.4 Ma) and are slightly older than those of the Cretaceous granitic rocks (77.1 to 81.5 Ma). These results indicate that clay deposits were formed with genetical relation to late Cretaceous felsic magmatism. Weolgagsan granite, which has been previously considered to be Cretaceous, is proved to be formed its age in Jurassic (140.9 and 144.8 Ma). The close relationships of K-Ar ages between the clay deposits and Cretaceous granitic rocks suggest that the clay deposits were formed during the hydrothermal alterations caused by the thermal effects (hydrothermal circulation) of the granitic intrusions rather than by the hydrothermal activities associated with volcanic activities.

  • PDF

Some Problems on the Concept of Mineral Paragenesis and Macrostructures of Ore Veins, with special reference to those of Ore Veins at the Ohtani Mine, Kyoto Prefecture, Japan (광물공생(鑛物共生)의 개념(槪念)에 대(對)한 문제점(問題點)과 광맥광상(鑛脈鑛床)의 macrostructure -특(特)히 일본(日本) 대고광산(大谷鑛山)의 광맥광상(鑛脈鑛床)에 대(對)한 macrostructure-)

  • Kim, Moon Young;Nakamura, Takeshi
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.97-102
    • /
    • 1986
  • Concepts on mineral association, mineral paragenesis, and mineralization stage relating to macrostructures of vein filling in ore veins are briefly discussed. As an example of plutonic ore vein, macrostructures of vein filling of plutonic tungsten-tin-copper vein at the Ohtani mine, Kyoto Prefecture, Japan, one of representatives of plutonic tungsten-tin vein related genetically to acidic magmatism of late Cretaceous in the Inner zone of Southwest Japan, are examined. Based on macrostructures of vein filling, three major mineralization stages, are distinguished by major tectonic breaks. Sequence of mineralization, characteristic features of each mineralization stage, and variations of filling temperature and salinity ranges of fluid inclusions in minerals from stage I to stage III are summarized.

  • PDF

Polymorphic Variations of Pyrrhotite as related to Tungsten-Tin-Copper Mineralization at the Ohtani Mine, Japan (일본(日本) 대곡광산산(大谷鑛山産) Pyrrhotite의 성질(性質))

  • Kim, Moon Young;Nakamura, Takeshi
    • Economic and Environmental Geology
    • /
    • v.19 no.1
    • /
    • pp.57-66
    • /
    • 1986
  • The ore deposit of the Ohtani mine is one of representatives of plutonic tungsten-tin veins related genetically to acidic magmatism of Late Cretaceous in the Inner zone of Southwest Japan. Based on macrostructures of vein filling, three major mineralization stages are distinguished by major tectonic breaks. The constituents of ore minerals are scheelite, cassiterite, chalcopyrite, pyrrhotite, sphalerite, with small amounts of cubanite, stannite, galena, native bismuth, bismuthinite, arsenopyrite and pyrite. The relationship between the polymorphic variations of pyrrhotite and the kinds of the associated characteristic of ore mineral, in relation with hypogene mineralization, has been demonstrated. Pyrrhotite of stage I is predominantly of the hexagonal phase (Hpo>Mpo). Pyrrhotite of stage II is mainly of the monoclinic phase ($Hpo{\ll}Mpo$). Pyrrhotite of stage III is a single monoclinic phase ($Hpo{\ll}Mpo$). The compositions of the hexagonal pyrrhotite decrease in Fe content ranging from 47.44 atom % Fe in stage I to 46.88 atom % Fe in stage III.

  • PDF

Paleoproterozoic low-pressure metamorphism and crustal evolution in the northeastern Yeongnam Massif, Korea

  • Kim, Jeong-Min
    • Proceedings of the Petrological Society of Korea Conference
    • /
    • 2006.02a
    • /
    • pp.43-60
    • /
    • 2006
  • The Yeongnam Massif, one of Precambrian basements in Korean Peninsula, is characterized by widespread occurrence of low-pressure/high-temperature (LP/HT) schists and gneisses accompanying extensive anatexis and granitic magmatism. Metapelitic mineral assemblages define three progressive metamorphic zones pertinent to low-pressure facies series: cordierite, sillimanite and garnet zones with increasing temperature. Metamorphic grade ranges from lower amphibolite to lower granulite facies and metamorphic conditions reach ca. 750-800 C and 4-6 kbar in migmatitic gneisses. Migmatitic gneisses are prominent in the sillimanite and garnet zones. Textural and petrogenetic relationshipsin leucosome suggest that migmatitic gneiss is the product of anatexis of metasedimentary rocks. The migmatite formation during the prograde metamorphism is governed initially by fluid-present melting and subsequently by biotite-dehydration melting. The large amount of leucosomes in the sillimaniteand garnet zones can be explained by the fluid-present molting possibly triggered by an external supply of aqueous fluid. Field and geochronologic relationships between leucogranites and migmatitic gneisses further suggest that leucogranite has providedfluid and heat required for widespread migmatization.

  • PDF