• Title/Summary/Keyword: macroporous microcarrier

Search Result 3, Processing Time 0.015 seconds

Bead-to-Bead Cell Transfer by Induction of Detachment of Anchorage Dependent HeLa Cells Grown on Macroporous Microcarriers (부착성 HeLa 세포의 탈리 유도에 의한 다공성 미립담체의 담체간 전이 배양)

  • 이두훈;박정극
    • KSBB Journal
    • /
    • v.13 no.1
    • /
    • pp.83-89
    • /
    • 1998
  • Using a cellulose macroporous microcarrier, HeLa cells were cultivated in 100mL spinner flask(Bellco Co., USA) and confluent cell laden microcarriers were subcultured by bead-to-bead cell transfer method. In macroporous mcirocarrier-HeLa system viable suspended cells played an important role in bead-to-bead cell transfer and that could be increased by use of RPMI-1640, a calcium-ion-reduced-media and high speed agitation. Successful bead-to-bead cell transfers were performed continuously three time in spinner flask. We applied this technique to produce recombinant Vaccinia virus which express $\beta$-galactosidase. Recombinant protein yield of bead-to-bead transferred culture was comparable to conventional microcarrier cultures that were inoculated by cells detached from T-flask. Although trypsinization is a useful method for subculturing microcarriers in some cases, that process adds quality control problem and handling steps to large scale cell production. There fore, bead-to-bead cell transfer technique offers another convenient and efficient scale-up method for continuous microcarrier cultures.

  • PDF

Evaluation of Macroporous and Microporous Carriers for CHO-K1 Cell Growth and Monoclonal Antibody Production

  • Rodrigues, Maria Elisa;Costa, Ana Rita;Fernandes, Pedro;Henriques, Mariana;Cunnah, Philip;Melton, David W.;Azeredo, Joana;Oliveira, Rosario
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1308-1321
    • /
    • 2013
  • The emergence of microcarrier technology has brought a renewed interest in anchorage-dependent cell culture for high-yield processes. Well-known in vaccine production, microcarrier culture also has potential for application in other fields. In this work, two types of microcarriers were evaluated for small-scale monoclonal antibody (mAb) production by CHO-K1 cells. Cultures (5 ml) of microporous Cytodex 3 and macroporous CultiSpher-S carriers were performed in vented conical tubes and subsequently scaled-up (20 ml) to shake-flasks, testing combinations of different culture conditions (cell concentration, microcarrier concentration, rocking methodology, rocking speed, and initial culture volume). Culture performance was evaluated by considering the mAb production and cell growth at the phases of initial adhesion and proliferation. The best culture performances were obtained with Cytodex 3, regarding cell proliferation (average $1.85{\pm}0.11{\times}10^6$ cells/ml against $0.60{\pm}0.08{\times}10^6$ cells/ml for CultiSpher-S), mAb production ($2.04{\pm}0.41{\mu}g/ml$ against $0.99{\pm}0.35{\mu}g/ml$ for CultiSpher-S), and culture longevity (30 days against 10-15 days for CultiSpher-S), probably due to the collagen-coated dextran matrix that potentiates adhesion and prevents detachment. The culture conditions of greater influence were rocking mechanism (Cytodex 3, pulse followed by continuous) and initial cell concentration (CultiSpher-S, $4{\times}10^5$ cells/ml). Microcarriers proved to be a viable and favorable alternative to standard adherent and suspended cultures for mAb production by CHO-K1 cells, with simple operation, easy scale-up, and significantly higher levels of mAb production. However, variations of microcarrier culture performance in different vessels reiterate the need for optimization at each step of the scale-up process.

The Cultivation of Anchorage-Dependent Animal Cell, Vero-6, on Macroporous Collagen Microcarrier (다공성 콜라젠 미립담체를 이용한 부착성 동물세포 Vero-6의 배양)

  • 최연수;최태부박정극
    • KSBB Journal
    • /
    • v.8 no.5
    • /
    • pp.465-472
    • /
    • 1993
  • The comparison of the capabilities of cell growth of four different kinds of commercially available microcarriers was carried out by culturing anchorage-dependent animal cells, Vero-6, in a spinner flask. Using 3 g/l of Cytodex 3, the maximum final cell density was about $1.4{\times}10^6$ cells/ml and increased up to $2.0{\times}10^6$ cells/ml by increasing microcarrier concentration up to 5 g/l. The macroporous collagen microcarriers, VX-100, informatrix, and Cultispher-G showed the final cell concentration of $4{\times}10^6$ cells/ml, $2.1{\times}10^6$ cells/ml, and $3.2{\times}10^6$ cells/ml, respectively at the microcarrier concentration of 5g/1. According to this result, VX-100 showed better cell growth than informatrix and cultispher-G and also showed about 2 fold increase in final cell density comparing to Cytodex 3 solid bead. When the intermittent bead-to-bead transfer technique was introduced in the culture using Cytodex 3 bead and cultispher-G, the result was very successful and the cells grew out very well. The recovered cells by dissolving collagen microcarrier using collagenase enzyme were mostly viable and grew out very well on the surface of the fresh microcarriers.

  • PDF