• Title/Summary/Keyword: macro-structure

Search Result 393, Processing Time 0.035 seconds

Validation of Adsorption Efficiency of Activated Carbons through Surface Morphological Characterization Using Scanning Electron Microscopy Technique

  • Malik, Ruchi;Mukherjee, Manisha;Swami, Aditya;Ramteke, Dilip S.;Sarin, Rajkamal
    • Carbon letters
    • /
    • v.5 no.2
    • /
    • pp.75-80
    • /
    • 2004
  • The studies on activated carbon prepared from walnut shell and groundnut shell were undertaken to ascertain the effect of initial state of precursor and activation process on the development of porosity in the resulting activated carbon. Walnut shell based carbon shows the presence of cellular pores while Groundnut shell based carbon shows fibrillar pore structure. The adsorption parameters, characterization of product and scanning electron microscopic studies carried out showed the presence of mainly Micro, Meso and Macro porosity in carbon prepared from Walnut shell while mainly micro porosity was observed in Groundnut shell based activated carbon. An interrelationship between the adsorption efficiency and porosity in terms of quality control parameters, for before and after activation, was validated through the scanning electron microscopic data.

  • PDF

Multiple Scale Processes in Microstructural Evolution: Case Study of Self-Reinforced β-Si3N4

  • Becher, Paul F.
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.575-580
    • /
    • 2016
  • Microstructural design of ceramics has generally focused on information gathered at the micro- and macro-scales and related this to how specific properties could be improved. Ceramic processing serves as the key to optimizes the final microstructure. However, the advent of nano-scale microstructures and highly advanced characterization tools are forcing us to develop new knowledge of what is occurring not just at the micro-scale but also at the atomic level. Thus we are now beginning to be able to address how microstructure is influenced by events at the atomic scale using atomic scale images and data. Theoreticians have joined us in interpreting the mechanisms involved in the "microstructural" evolution at multiple scales and how this can be used to enhance specific properties of ceramics. The focus here is on delving into the various layers the "microstructure" in order understand how atomic-scale events influence the structure and properties of ceramics.

Performance analysis of a detailed FE modelling strategy to simulate the behaviour of masonry-infilled RC frames under cyclic loading

  • Mohamed, Hossameldeen M.;Romao, Xavier
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.551-565
    • /
    • 2018
  • Experimental testing is considered the most realistic approach to obtain a detailed representation of the nonlinear behaviour of masonry-infilled reinforced concrete (RC) structures. Among other applications, these tests can be used to calibrate the properties of numerical models such as simplified macro-models (e.g., strut-type models) representing the masonry infill behaviour. Since the significant cost of experimental tests limits their widespread use, alternative approaches need to be established to obtain adequate data to validate the referred simplified models. The proposed paper introduces a detailed finite element modelling strategy that can be used as an alternative to experimental tests to represent the behaviour of masonry-infilled RC frames under earthquake loading. Several examples of RC infilled frames with different infill configurations and properties subjected to cyclic loading are analysed using the proposed modelling approach. The comparison between numerical and experimental results shows that the numerical models capture the overall nonlinear behaviour of the physical specimens with adequate accuracy, predicting their monotonic stiffness, strength and several failure mechanisms.

Multi-Filament Hydrostatic Extrusion and Fine Wire Dieless Stretching Technology (미세 다심선 정수압 압출 및 단선 무금형 신장 성형 기술)

  • Park, Hoon-Jae;Kim, Chang-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.4
    • /
    • pp.79-85
    • /
    • 2006
  • Multi-filament hydrostatic extrusion was developed as a fine wire manufacturing process and wire forming experiments were conducted. Also, single wire stretch forming process was proposed in the possibility of obtaining long wire with constant cross-section. In the multi filament extrusion since the workpiece, die and forming facility are in the macro forming circumstance, fine wire and fine hole structure with less than a few micrometer can be easily obtained. Although stretch forming does not use a die in order to avoid the friction problem between the workpiece and the die, it is necessary to have high level of technology to maintain cross-sectional shape and measure in longitudinal direction.

  • PDF

Study of High Precision Mechanism For Loading/Unloading of Material (소재의 정밀 Loading/unloading 기술 개발)

  • Choi Hyeun-Seok;Tak Tae-Yul;Han Chang-Soo;Lee Nak-Kyu;Choi Tae-Hoon;Lee Hye-Jin
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.419-423
    • /
    • 2005
  • In microfactory, loading/unloading mechanism supply the row material to processing machines for manufacturing process such as pressing, cutting, plastic deformation. This mechanism for rnicrofactory is designed as modularity robot. Microfactory system have to be flexible structure for variety product item. For system flexibility, applied mechanisms are developed as moduality. Robot moduality needs the specific characteristics which are different from one of macro, typical robot system. In this paper, we discussed about the modularity robot. and proposed the loading/unloading mechanism for working in microfactory system.

  • PDF

A Comparative Management Study Focused on Manufacturer (제조업경영의 국제비교에 관한 소고)

  • 정태영
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.8 no.12
    • /
    • pp.79-87
    • /
    • 1985
  • Environmental approach places the focus on a cause-and-effect relationship between the external environments and the internal business conditions. But that approach is an attempt to describe the characteristics of environmental constraints. W.J. Abernathy, K.B. Clark, and A.M. Kantrow attribute the Japanese carmaker's success to superiority in the manufacturing plant, especially in their process systems and work force management. They provide a paradigm for discussions of manufacturing competitiveness comparison. The structure of the paradigm has two main distinctions. The first is the division between analysis and prescription of a macro sort and those of a micro sort, the second is the division between analysis and prescription based on hardware and those based on software.

  • PDF

진공용 나노 스테이지 개발을 위한 고찰

  • 홍원표;강은구;이석우;최헌종
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2004.05a
    • /
    • pp.223-228
    • /
    • 2004
  • Miniaturization is the central theme in modern fabrication technology. Many of the components used in modern products are becoming smaller and smaller. The direct write FIB technology has several advantages over contemporary micromachining technology, including better feature resolution with low lateral scattering and capability of maskless fabrication. Therefore, the application of FIB technology in micro fabrication has become increasingly popular. In recent model of FIB, however the feeding system has been a very coarse resolution of about a few $\mu\;\textrm{m}$. It is not unsuitable to the sputtering and the deposition to make the high-precision structure in micro or macro scale. Our research is the development of nano stage of 200mm strokes and 10nm resolutions. Also, this stage should be effectively operating in ultra high vacuum of about $1\times10^{-7}$ torr. This paper presents the concept of nano stages and the discussion of the material treatment for ultra high vacuum.

  • PDF

Sintering Multi-scale Virtual Reality

  • Olevsky, Eugene A.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.264-265
    • /
    • 2006
  • The directions of further developments in the modeling of sintering are pointed out, including multi-scale modeling of sintering, on-line sintering damage criteria, particle agglomeration, sintering with phase transformations. A true multi-scale approach is applied for the development of a new meso-macro methodology for modeling of sintering. The developed macroscopic level computational framework envelopes the mesoscopic simulators. No closed forms of constitutive relationships are assumed for the parameters of the material. The model framework is able to predict the final dimensions of the sintered specimen on a global scale and identify the granular structure in any localized area for prediction of the material properties.

  • PDF

A Study on Proto-type Development of BIM based Stochastic Duration Estimation Module (BIM기반 추계학적 공기 예측 모듈 프로토 타입 개발에 관한 연구)

  • Park, Jae-Hyun;Yun, Seok-Heon;Paek, Joon-Hong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.159-162
    • /
    • 2009
  • Today's construction is more various and more complex. Because of that, a lot of uncertain factors are occurred and they related uncertain construction duration. For management complex architecture project, importance of construction schedule management also increased. In previous studies, one of solutions to overcome those problems is suggested. It was BIM based construction simulation process which focused on construction schedule and construction schedule management. But latest process had limited point which has no duration estimation function. So this paper suggested duration estimation method and developed duration estimation module. Duration estimation module developed with current scheduling tool MS Project and their macro function. However, this module has just developed Reinforced Concrete Structure and has to do more development and research.

  • PDF

Interpretation of fracture network in Rock mass using borehole wall image (시추공벽 영상을 이용한 암반내 절리구조 해석)

  • 김재동;김종훈
    • Tunnel and Underground Space
    • /
    • v.8 no.4
    • /
    • pp.342-350
    • /
    • 1998
  • In this study, fracture network in rock mass was interpreted using borehole wall images obtained by televiewer. The orientation and JRC value of major joint set were evaluated adopting image analysis techniques, of which process were written in macro-program code. As linking JRC to joint stiffness using Barton-Bandis model, fracture network map was produced for application to jointed rock modelling in numerical analysis of underground structure.

  • PDF