• 제목/요약/키워드: macro fiber composite (MFC)

검색결과 35건 처리시간 0.031초

수중에서 퍼넬형 macro fiber composite 에너지 하베스터의 에너지 수확 특성 (A study on the underwater energy harvesting characteristics of a funnel type macro fiber composite energy harvester)

  • 이종길;안진효
    • 한국음향학회지
    • /
    • 제42권1호
    • /
    • pp.57-66
    • /
    • 2023
  • 본 연구에서 제안한 에너지 하베스팅 장치는 입구가 넓고 출구가 좁은 퍼넬형 에너지 하베스터(Funnel Type Energy Harvester, FTEH)에 Macro Fiber Composite(MFC)가 외팔보 형태로 장착되어 있는 구조로서 MFC의 구조를 변화 시켰을 때 FTEH에 수확하는 에너지양의 특성을 이론과 실험을 통하여 분석하였다. MFC의 길이를 50 % 증가 시켰을 때 진동 변위는 3.5배 증가하였고, 두께를 75 % 감소시 30.9배 증가하였다. 수조 실험에서 최대 전력량은 스파이럴 스크루가 장착된 상태의 유연한 지지대에 수직으로 설치된 MFC가 스파이럴 스크루가 없고 견고한 지지대에 수평으로 설치된 경우보다 약 5배 정도 높았다. FTEH에 최적저항 4,010 kΩ을 적용하여 유속 0.24 m/s일 때 FTEH의 출력을 350 s 동안 커패시터에 에너지를 저장하면 4 ㎼·s에 도달하였다. 빠른 유속으로 유연한 지지대에 수직으로 설치된 대면적 MFC의 커패시터 충전 시간을 길게 하면 충전 에너지를 증가시킬 수 있음을 확인하였다.

Modeling techniques for active shape and vibration control of macro-fiber composite laminated structures

  • Zhang, Shun-Qi;Chen, Min;Zhao, Guo-Zhong;Wang, Zhan-Xi;Schmidt, Rudiger;Qin, Xian-Sheng
    • Smart Structures and Systems
    • /
    • 제19권6호
    • /
    • pp.633-641
    • /
    • 2017
  • The complexity of macro-fiber composite (MFC) materials increasing the difficulty in simulation and analysis of MFC integrated structures. To give an accurate prediction of MFC bonded smart structures for the simulation of shape and vibration control, the paper develops a linear electro-mechanically coupled static and dynamic finite element (FE) models based on the first-order shear deformation (FOSD) hypothesis. Two different types of MFCs are modeled and analyzed, namely MFC-d31 and MFC-d33, in which the former one is dominated by the $d_{31}$ effect, while the latter one by the $d_{33}$ effect. The present model is first applied to an MFC-d33 bonded composite plate, and then is used to analyze both active shape and vibration control for MFC-d31/-d33 bonded plate with various piezoelectric fiber orientations.

Feasibility of MFC (Macro-Fiber Composite) Transducers for Guided Wave Technique

  • Ren, Gang;Yun, Dongseok;Seo, Hogeon;Song, Minkyoo;Jhang, Kyung-Young
    • 비파괴검사학회지
    • /
    • 제33권3호
    • /
    • pp.264-269
    • /
    • 2013
  • Since MFC(macro-fiber composite) transducer has been developed, many researchers have tried to apply this transducer on SHM(structural health monitoring), because it is so flexible and durable that it can be easily embedded to various kinds of structures. The objective of this paper is to figure out the benefits and feasibility of applying MFC transducers to guided wave technique. For this, we have experimentally tested the performance of MFC patches as transmitter and sensors for excitation and reception of guided waves on the thin aluminum alloy plate. In order to enhance the signal accuracy, we applied the FIR filter for noise reduction as well as used STFT(short-time Fourier transform) algorithm to image the guided wave characteristics clearly. From the results, the guided wave generated based on MFC showed good agreement with its theoretical dispersion curves. Moreover, the ultrasonic Lamb wave techniques based on MFC patches in pitch-catch manner was tested for detection of surface notch defects of which depths are 10%, 20%, 30% and 40% of the aluminum plate thickness. Results showed that the notch was detectable well when the notch depth was 10% of the thickness or greater.

압전섬유작동기를 이용한 형상적응날개 (Morphing wing using Macro Fiber Composite actuator)

  • 나영호;김지환
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.9-12
    • /
    • 2005
  • Recently, research on the morphing wing is an interesting issue to develop the capability of the wing such as improving the lift and reduction of drag during the operation of an aircraft by changing the wing shape from one configuration to another. A more efficient weight reduction of the wing using smart or morphing wing concept can be achieved in comparison with the conventional flaps. In this study, it is investigated the behaviors of the morphing wing using Macro Fiber Composite (MFC) actuators. Generally, MFC is the piezocomposite actuator with the rectangular PZT fiber and epoxy matrix, and uses the interdigitated electrode to produce more powerful actuation in the in-plane direction. Furthermore, it can produce the twisting actuation as compared with the traditional PZT actuators. In the formulation, the first-order shear deformation plate theory is used, and finite element method is adopted in the numerical analysis of the model. Results show the characteristics of the static behavior of the morphing wing according to the change of the actuation voltage.

  • PDF

The actuation equation of macro-fiber composite coupled plate and its active control over the vibration of plate and shell

  • Tu, Jianwei;Zhang, Jiarui;Zhu, Qianying;Liu, Fan;Luo, Wei
    • Structural Monitoring and Maintenance
    • /
    • 제5권2호
    • /
    • pp.297-311
    • /
    • 2018
  • Plate and shell structure is widely applied in engineering, i.e. building roofs, aircraft wings, ship platforms, and satellite solar arrays. Its vibration problem has become increasingly prominent due to the tendency of lightening, upsizing and flexibility. As a new smart material with great actuating force and toughness, macro-fiber composite (MFC) is composed of piezoelectric fiber and epoxy resin basal body, which can be directly pasted onto the surface of plate and shell and is suitable for vibration control. This paper deduces the actuation equation of MFC coupled plate in different boundary conditions, an equivalent finite element modeling method is proposed which uses MFC actuating force as the applied excitation, and on this basis the active control simulation and experiment of MFC over plate and shell structure vibration are accomplished. The results indicate that MFC is able to implement effective control over plate and shell structure vibration in multi-band range. The comparison between experiment and simulation proves that the actuation equation deduced herein, effective and practicable, can be applied into the simulation calculation of MFC vibration control over plate and shell structure.

Macro fiber composite (MFC) 센서를 이용한 음향방출 기술 기반 배관 누수 감지 시스템 (Acoustic Emission (AE) Technology-based Leak Detection System Using Macro-fiber Composite (MFC) Sensor)

  • 박재현;이시맥;이범주;김선주;유형민
    • Composites Research
    • /
    • 제36권6호
    • /
    • pp.429-434
    • /
    • 2023
  • 본 연구에서는 기존 배관 가스 누출 감지에 사용되던 음향방출 센서가 실시간 모니터링에 적용될 때 발생할 수 있는 문제들을 개선하기 위해, Macro-fiber composite (MFC) 트랜스듀서를 음향방출 센서로 사용하여 가스 누출 감지 시스템에 적용하였다. 적용 전 MFC의 구조를 최적화하기 위해 구조해석을 진행하여 제작하였고, 그 결과 MFC가 가지는 유연성으로 굴곡진 배관에 잘 밀착되어 AE 신호를 문제없이 수신할 수 있었다. AE 신호 분석 결과 고압 누출, 저압 누출 모두 파라미터 값 변화에 유의미한 결과를 보였으며, 특히, FFT 그래프의 파라미터에서 고압 누출의 경우 누출이 없는 경우 대비 120~626%의 변화량, 저압 누출의 경우 9~22%의 변화량을 보였다. 또한, 누출 발생 부위에서의 거리에 따라, 거리가 멀수록 이러한 파라미터 변화량이 줄어드는 경향을 보여, 추후 파라미터 변화량 감지를 통해 누출 감지가 가능할 뿐만 아니라, 변화량으로부터 누출 발생 위치를 파악할 수 있을 것으로 보인다.

스마트 재료를 이용한 캠버 변화가 가능한 플래핑 날개 구조 및 공력 특성 (Structural and Aerodynamic Characteristics of A Flapping Wing with Changeable Camber Using A Smart Material)

  • 김대관;김홍일;권기정;한재홍
    • 한국항공우주학회지
    • /
    • 제35권5호
    • /
    • pp.390-396
    • /
    • 2007
  • 본 연구에서는 새의 날개운동을 모사하기 위하여 스마트 재료를 이용한 플래핑 날개를 설계 및 제작하였다. 날개는 복합재료 프레임과 유연한 PVC 표피 그리고 표면 작동기로 구성되어 있으며, 주요 날개운동으로서 날갯짓, 비틀림 그리고 캠버 운동을 선정하였다. 날개의 캠버를 변화시키기 위하여 Macro-Fiber Composite를 표면작동기로서 적용하였으며, 압전-열 관계식을 이용하여 MFC의 구조 응답을 해석하였다. 양력과 추력을 동시에 측정하기 위하여 두개의 로드셀로 구성된 시험대를 제작하였으며, 공기역학적 특성을 평가하기 위하여 풍동실험을 수행하였다. 실험결과로부터 주요 양력은 기체의 전진속도와 피치각에 의존되며, 추력은 날갯짓 주파수에 의존됨을 확인하였다. 또한 MFC 작동기를 이용한 캠버효과를 통하여 정적조건에서 24.4%와 동적조건에서 20.8%의 충분한 양력증가를 확인할 수 있었다.

MFC 작동기를 이용한 수중 Hull 구조물의 능동 진동 제어 (Active Vibration Control of Underwater Hull Structure Using Macro-Fiber Composite Actuators)

  • 권오철;손정우;최승복
    • 한국소음진동공학회논문집
    • /
    • 제19권2호
    • /
    • pp.138-145
    • /
    • 2009
  • Structural vibration and noise are hot issues in underwater vehicles such as submarines for their survivability. Therefore, active vibration and noise control of submarine, which can be modeled as hull structure, have been conducted by the use of piezoelectric materials. Traditional piezoelectric materials are too brittle and not suitable to curved geometry such as hull structures. Therefore, advanced anisotropic piezocomposite actuator named as Macro-Fiber Composite(MFC), which can provide great flexibility, large induced strain and directional actuating force is adopted for this research. In this study, dynamic model of the smart hull structure is established and active vibration control performance of the smart hull structure is evaluated using optimally placed MFC. Actuating performance of MFC is evaluated by finite element analysis and dynamic modeling of the smart hull structure is derived by finite element method considering underwater condition. In order to suppress the vibration of hull structure, Linear Quadratic Gaussian(LQG) algorithm is adopted. After then active vibration control performance of the proposed smart hull structure is evaluated with computer simulation and experimental investigation in underwater. Structural vibration of the hull structure is decreased effectively by applying proper control voltages to the MFC actuators.

Damage detection for pipeline structures using optic-based active sensing

  • Lee, Hyeonseok;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • 제9권5호
    • /
    • pp.461-472
    • /
    • 2012
  • This study proposes an optics-based active sensing system for continuous monitoring of underground pipelines in nuclear power plants (NPPs). The proposed system generates and measures guided waves using a single laser source and optical cables. First, a tunable laser is used as a common power source for guided wave generation and sensing. This source laser beam is transmitted through an optical fiber, and the fiber is split into two. One of them is used to actuate macro fiber composite (MFC) transducers for guided wave generation, and the other optical fiber is used with fiber Bragg grating (FBG) sensors to measure guided wave responses. The MFC transducers placed along a circumferential direction of a pipe at one end generate longitudinal and flexural modes, and the corresponding responses are measured using FBG sensors instrumented in the same configuration at the other end. The generated guided waves interact with a defect, and this interaction causes changes in response signals. Then, a damage-sensitive feature is extracted from the response signals using the axi-symmetry nature of the measured pitch-catch signals. The feasibility of the proposed system has been examined through a laboratory experiment.

MFC와 능동 제어를 이용한 손상된 복합재의 동적 특성 복원 (Dynamic Characteristics Modification of Damaged Composite Structure Using MFC and Active Control Algorithm)

  • 손정우;김흥수
    • 한국소음진동공학회논문집
    • /
    • 제23권12호
    • /
    • pp.1066-1072
    • /
    • 2013
  • In this work, active control algorithm is adopted to reduce delamination effects of the damaged composite structure and control performance with MFC actuator is numerically evaluated. Finite element model for the damaged composite structure with piezoelectric actuator is established based on improved layerwise theory. In order to achieve high control performance, MFC actuator, which has increased actuating force, is considered as a piezoelectric actuator. Mode shapes and corresponding natural frequencies for the damaged smart composite structure are studied. After design and implementation of active controller, dynamic characteristics of the damaged smart composite structure are investigated.