• Title/Summary/Keyword: machining tolerance

Search Result 104, Processing Time 0.026 seconds

A Study on the Ultra-precision Compensation Machining of Axisymmetric Lens Core (축대칭 렌즈 코어의 초정밀 보정가공에 관한 연구)

  • Kang Sang-Do;Kim Woo-Soon;Jang Kwang-Ho;Park Soon-Seob;Kim Dong-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.1
    • /
    • pp.108-114
    • /
    • 2005
  • Code V was used to make a plan for collimator lens with aspherical surface in the present study. The acquired optical design data were applied for ultra-precision machining. The optimum properties were determined to find ways to compensate the tool positioning error allowance during the ultra-precision machining. In ultra-precision aspheric machining, figure tolerance corrected by tool positioning error be improved by compensation cycle number.

A study on CAM System for Machining of Sculptured Surface in Mold Cavity(2) -Machining Algorithm and Construction of the System- (3차원 자유곡면 가공용 CAM시스템의 개발에 관한 연구 (2) -가공 알고리즘 및 시스템 구성-)

  • 정희원;정재현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.1
    • /
    • pp.54-59
    • /
    • 1995
  • In this paper, we propose unique CAM system for personal computer that can define the geometric shape in an ease manner and to machine the sculptured surfaces of a mold cavity. In this CAM system, if a user inputs simple initial information such as the control points for a shape definition and a radius of tool etc., all of the procedures for machining will be processed automatically by the CAM system as well as NC commands and simulations. In addition to this, the environment of the CAM system is composed of "C" language for an easy extention of aditional modules. Also, the CAM system with the following characteristics was developed. 1. The optimum tool path satisfying given tolerance limits reduces the time for the high precision machining of sculptured surface in a mold cavity. 2. The generated NC commands can be transmitted to NC directly by the CAM system through RS-232C from PC.C from PC.

  • PDF

an Algorithm for Automatic Generation of a Dimension and Tolerance Chart (치수공차표의 자동생성 알고리즘)

  • 정종인;김광수;최후곤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.353-357
    • /
    • 2000
  • A dimensioning system in a manufacturing process is often complex, especially when a lot of operations are involved in the process. Determination of operational dimensions and tolerances becomes even more complicated if there exist inconsistencies between operational and design relationships among operational dimensions in machining. This chart furnishes a record of the relationships in an easy-to-grasp form, proves that sufficient stock for a cut is available even under adverse conditions, and also proves that separate operations, when taken together, will harmonize as desired. In this paper, various existing roles of the chart have been extended to an operational routing sheet by generating it automatically, providing machining conditions, and verifying operational tolerances.

  • PDF

Effects of the Tool Path on the Geometric Characteristics of Milled Surface (가공경로가 밀링가공면의 기하학적 특성에 미치는 영향)

  • Park, Moon-Jin;Kim, Kang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.58-63
    • /
    • 1998
  • There are lots of factors that are related to the geometric characteristics of machined surface. Among them, the tool path and milling mode (up cut milling or down cut milling) are the easiest controllable machining conditions. Thus, the first objective of this research is to study the effects of them on the milled surface that is generated by an end milling tool. To get precision parts, not only the machining process but also the measurement of geometric tolerance is important. But, this measurement requires a lot of time, because the infinite surface points must be measured in the ideal case. So, the second objective is to propose a simple flatness measurement method that can be available instead of the 3-D geometric tolerance measurement method, using a scale factor and characterized points. Finally, it is also shown that the possibility of flatness improvement by shifting the consecutive fine cutting tool path as compared with the last rough cutting tool path.

  • PDF

Effects of the Grinding Conditions on the Shape of Center Ground Parts

  • Kim, Kang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.3
    • /
    • pp.55-61
    • /
    • 2003
  • The form accuracy of parts has become an important parameter. Therefore, not only dimensional tolerance but also geometric tolerances are used in the design stage to satisfy the required quality and functions of parts. But the information on the machining conditions, which can satisfy the assigned geometric tolerance in do sign, is insufficient. The objectives of this research are to study the effects of the grinding parameters such as traverse speed, work speed, depth of cut, and dwell time on the after-ground workpiece shape, and to find out the major parameters among them The results are as follows; The effects of work speed and depth of cut on the workpiece shape are negligible compared with the effect of traverse speed. These is an optimal dwell time depending on the traverse speed. The optimal dwell time is decreasing as the traverse speed is increasing.

An improved NC-code generation method for circular interpolation (새로운 원호보간법에 의한 공구경로의 생성)

  • Yang, Min-Yang;Shon, Tae-Young;Cho, Hyun-Deog
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.77-83
    • /
    • 1997
  • This work is concerned with the algorithm of generating a new circular are interpolation. This research presents a new biarc curve fitting that is a circular interpolation method based on a triarc curve fitting. The triarc method, where a segment span is composed of three circular arcs, using maximum error estimation has the advantage of generating arc splines easily to a given tolerance. The new biarc method is called when the adjacent radii are the same in the same in the triarc method. In generating the machining data for various cam curves in CNC machining with the biarc method and the new biarc method, the latter accomp- lished faster NC-code generation, shorter NC-code block formation and machined the same cam profile more efficiently.

  • PDF

Nonlinear Tolerance Allocation for Assembly Components (조립품을 위한 비선형 공차할당)

  • Kim, Kwang-Soo;Choi, Hoo-Gon
    • IE interfaces
    • /
    • v.16 no.spc
    • /
    • pp.39-44
    • /
    • 2003
  • As one of many design variables, the role of dimension tolerances is to restrict the amount of size variation in a manufactured feature while ensuring functionality. In this study, a nonlinear integer model has been modeled to allocate the optimal tolerance to each individual feature at a minimum manufacturing cost. While a normal distribution determines statistically worst tolerances with its symmetrical property in many previous tolerance allocation studies, a asymmetrical distribution is more realistic because its mean is not always coincident with a process center. A nonlinear integer model is modeled to allocate the optimal tolerance to a feature based on a beta distribution at a minimum total cost. The total cost as a function of tolerances is defined by machining cost and quality loss. After the convexity of manufacturing cost is checked by the Hessian matrix, the model is solved by the Complex Method. Finally, a numerical example is presented demonstrating successful model implementation for a nonlinear design case.

Five-axis CL Data Generation by Considering Tool Swept Surface Model in Face Milling of Sculptured Surface (공구이동궤적 모델을 이용한 5축 페이스밀링 가공데이터 생성)

  • 이정근;박정환
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.35-43
    • /
    • 2004
  • It is well known that the five-axis machining has advantages of tool accessibility and machined surface quality when compared with conventional three-axis machining. Traditional researches on the five-axis tool-path generation have addressed interferences such as cutter gouging, collision, machine kinematics and optimization of a CL(cutter location) or a cutter position. In the paper it is presented that optimal CL data for a face-milling cutter moving on a tool-path are obtained by incorporating TSS(tool swept surface) model. The TSS model from current CL position to the next CL position is constructed based on machine kinematics as well as cutter geometry, with which the deviation from the design surface can be computed. Then the next CC(cutter-contact) point should be adjusted such that the deviation conforms to given machining tolerance value. The proposed algorithm was implemented and applied to a marine propeller machining, which proved effective from a quantitative point of view. In addition, the algorithm using the TSS can also be applied to avoid cutter convex interferences in general three-axis NC machining.

NC Tool Paths Program Development for the Pocket Machining (포켓 가공을 위한 NC 공구경로의 프로그램 개발)

  • Oh, Seon;Kwon, Young-Woong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.75-81
    • /
    • 2003
  • Pocket machining is metal removal operation commonly used for creating depressions in machined parts. Numerically controlled milling is the primary means for machining complex die surface. These complex surfaces are generated by a milling cutter which removes material as it traces out pre-specified tool paths. To machine, a component on a CNC machine, part programs which define the cutting tool path are needed. This tool path is usually planned from CAD, and converted to a CAM machine input format. In this paper I proposed a new method for generating NC tool paths. This method generates automatically NC tool paths with dynamic elimination of machining errors in 2$\frac{1}{2}$ arbitrary shaped pockets. This paper generates a spiral-like tool path by dynamic computing optimal pocket of the pocket boundary contour based on the type and size of the milling cutter, the geometry of the pocket contour and surface finish tolerance requirements. This part programming system is PC based and simultaneously generates a G-code file.

Machine Capability Index Evaluation of Machining Center and Comparative Analysis with Machine Property (머시닝센터의 기계능력지수 평가 및 기계특성과의 분석)

  • Hong, Won-Pyo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.349-355
    • /
    • 2013
  • Recently, there is an increasing need to produce more precise products with small deviations from defined target values. Machine capability is the ability of a machine tool to produce parts within a tolerance interval. Capability indices are a statistical way of describing how well a product is machined compared to defined target values and tolerances. Today, there is no standardized way to acquire a machine capability value. This paper describes a method for evaluating machine capability indices in machining centers. After the machining of specimens, the straightness, roundness, and positioning accuracy were measured by using CMM (coordinate measuring machine). These measured values and defined tolerances were used to evaluate the machine capability indices. It will be useful for the industry to have standardized ways to choose and calculate machine capability indices.