• Title/Summary/Keyword: machining surface

Search Result 1,785, Processing Time 0.025 seconds

A Study on Cutting Force Measurement Using a Cylindrical Capacitive Spindle Sensor (주축 변위 센서를 이용한 절삭력 측정에 관한 연구)

  • 김일해;장동영;한동철
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.17-23
    • /
    • 2002
  • A cylindrical capacitance-type spindle displacement sensor was developed and its effectiveness as a system to monitor cutting forces during hard turning was tested in this research. The sensor was installed between the face of spindle cover and the chucking element and measured pure radial motion of the spindle under the condition with presence of roundness error at measured surface. To prove the effectiveness of the developed system hard aiming tests using ceramic inserts and tool steel as workpiece were conducted. The workpiece was hardened up to 65 Rc. The variations of pure radial motion of the spindle ware measured during the cutting tests. The signals from the sensor showed the same pattern of cutting force variations from the tool dynamometer due to the progress of tool wear. As the flank wear of the ceramic tool increased both static component of cutting forces and the amount of center shift of spindle orbit increased, Results from the research showed that the developed sensor could be utilized as an effective and cheap on-line sensing device to monitor cutting conditions and tool performance in the un-manned machining center.

Evaluation of Grinding Machining Characteristics of $ZrO_2$ Ferrule Using the Taguchi Method (다구치 방법을 이용한 지르코니아 세라믹스 페룰의 연삭 가공 특성 평가)

  • 김기환;최영재;홍원표;이석우;최헌종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.516-519
    • /
    • 2004
  • As the optical communication industry is developed, the demand of optical communication part is increasing. ZrO$_2$ ceramic ferrule is very important part which can determines the transmission efficiency and information quality to connect the optical fibers. In general ZrO$_2$ ceramic ferrule is manufactured by grinding process because the demands precision is very high. And the co-axle grinding process of ZrO$_2$ ceramic ferrule is to make its concentricity all of uniform before centerless grinding. This paper deals with the analysis of the process parameters such as grinding wheel speed, grinding feedrate and regulating wheel speed as influential factors, on the concentricity and surface finish developed based on Taguchi's experimental design methods. Taguchi s tools such as orthogonal array, signal-to-noise ratio, factor effect analysis, etc. have been used for this purpose optimal condition has been found out. Thus, if possible be finding highly efficient and quality grinding conditions.

  • PDF

The Influence of Parameters Controlling Beam Position On-Sample During Deposition Patterning Process with Focused Ion Beam (빔 위치 관련 제어인자가 집속이온빔 패턴 증착공정에 미치는 영향)

  • Kim, Joon-Hyun;Song, Chun-Sam;Kim, Youn-Jea
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.209-216
    • /
    • 2008
  • The application of focused ion beam (FIB) depends on the optimal interaction of the operation parameters between operating parameters which control beam and samples on the stage during the FIB deposition process. This deposition process was investigated systematically in C precursor gas. Under the fine beam conditions (30kV, 40nm beam size, etc), the effect of considered process parameters - dwell time, beam overlap, incident beam angle to tilted surface, minimum frame time and pattern size were investigated from deposition results by the design of experiment. For the process analysis, influence of the parameters on FIB-CVD process was examined with respect to dimensions and constructed shapes of single and multi- patterns. Throughout the single patterning process, optimal conditions were selected. Multi-patterning deposition were presented to show the effect of on-stage parameters. The analysis have provided the sequent beam scan method and the aspect-ratio had the most significant influence for the multi-patterning deposition in the FIB processing. The bitmapped scan method was more efficient than the one-by-one scan type method for obtaining high aspect-ratio (Width/Height > 1) patterns.

Modeling of Depth/Width of Cut for Abrasive Water Jet Milling of Titanium (티타늄의 워터젯 밀링을 위한 가공깊이/폭 모델링)

  • Park, Seung Sub;Kim, Hwa Young;Ahn, Jung Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.83-88
    • /
    • 2016
  • Because of the increasing tool cost for cutting hard-to-cut materials, abrasive water jet (AWJ) milling recently has been regarded as a potential alternative machining method. However, it is difficult to control the depth and width of cut in AWJ milling because they vary depending on many AWJ cutting parameters. On 27 conditions within a limited range of pressure, feed rate, and abrasive flow rate, AWJ cutting was conducted on titanium, and depth profiles were measured with a laser sensor. From the depth profile data, depth and width of cut were acquired at each condition. The relationships between depth and parameters and between width and parameters were derived through regression analysis. The former can provide proper cutting conditions and the latter the proper pick feed necessary to generate a milled surface. It is verified that pressure mostly affects depth, whereas abrasive flow rate mostly affects width.

Fabrication of Micro-Lens Array with Long Focal Length for Confocal Microscopy (공초점 현미경용 장초점 마이크로렌즈 제작)

  • Kim, Gee-Hong;Lim, Hyung-Jun;Jeong, Mi-Ra;Lee, Jae-Jong;Choi, Kee-Bong;Lee, Hyung-Seok;Do, Lee-Mi
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.472-477
    • /
    • 2011
  • This paper shows the method of fabrication of a micro lens array comprised of a Nipkow disk used in a large-area, high-speed confocal microscopy. A Nipkow disk has two components, a micro lens array disk and a pinhole array disk. The microlens array focuses illumination light onto the pinhole array disk and redirects reflected light from a surface to a sensor. The micro lens which are positioned in order on a disk have a hemispheric shape with a few tens of micron in diameter, and can be fabricated by a variety of methods like mechanical machining, semiconductor process, replication process like imprinting process. This paper shows how to fabricate the micro lens array which has a long focal length by reflow and imprinting process.

The Development of Automatic Tool Change System for Polishing Robot and Windows-Environment Integration Program for Application (연마 로붓용 자동공구교환장치와 Windows환경에서의 통합용 프로그램 개발)

  • Park, Sang-Min;An, Jong-Seok;Song, Moon-Sang;Kim, Jae-Hee;Yoo, Bum-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.147-154
    • /
    • 2003
  • An effective die-polishing robot system is developed. ATC (Automatic Tool Change), tool posture angle control, and robot program for polishing application are developed and integrated into a robotic system that consists of a robot, pneumatic grinding tool, and grinding abrasives (papers and special films). ATC is specifically designed to exchange whole grinding tool set for complete unmanned operation. A tool posture angle control system is developed for the tools to maintain a specified skew angle rather than right angle on the surface for best finishing results. A PC and the robot controller control ATC and tool posture angle. Also, there have been more considerations on enhancing the performance of the system. Elastic material is inserted between the grinding pad and the holder for better grinding contact. Robot path data are generated automatically from the NC data of previous machining process.

A Combined Bearing Arrangement for High Damping Spindle Systems (고감쇠 주축 시스템을 위한 베어링의 복합배열에 관한 연구)

  • Lee, C.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.139-145
    • /
    • 1996
  • The machining accuracy and performance is largely influenced by the static, dynamic and thermal characteristics of spindle systems in machine tools, because the spindle system is a intermedium for cutting force from tool and machine powef from motor. Large cutting force and power are transmitted by bearing with a point or line contact. So, the spindle system is the static and dynamic weakest point in machine structure. For improvement of static stiffness of spindle system can be changed design parameters, such as diameter of spindle, stiffness of bearing and bearing span. But for dynamic stiffness, the change of the design parameters are not useful. In this paper, the combined bearing arrangement is suggested for high damping spindle system. The combined bearing arrangement is composed of tandem double back to back arrangement type ball bearins and a high damping hydrostatic bearing. The variation of static deflection and amplitude in first natural frequency is evaluated with the location of hydrostatic bearing between front and rear ball bearing. The optimized location of hydrostatic bearing for high static and dynamic stiffness is determined rapidly and exactly using the mode shape and transfer function of spindle. The calculation of damping effect on vibration by unbalance of grinding wheel and pulley in optimized spindle system is carried out to verify the validity of the combined bearing arrangement. Finally, the simulation of grinding process show that the surface roughness of workpiece with high damping spindle system is 60% better than with ball bearing spindle system.

  • PDF

Applying an Artificial Neural Network to the Control System for Electrochemical Gear-Tooth Profile Modifications

  • Jianjun, Yi;Yifeng, Guan;Baiyang, Ji;Bin, Yu;Jinxiang, Dong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.4
    • /
    • pp.27-32
    • /
    • 2007
  • Gears, crucial components in modern precision machinery for power transmission mechanisms, are required to have low contacting noise with high torque transmission, which makes the use of gear-tooth profile modifications and gear-tooth surface crowning extremely efficient and valuable. Due to the shortcomings of current techniques, such as manual rectification, mechanical modification, and numerically controlled rectification, we propose a novel electrochemical gear-tooth profile modification method based on an artificial neural network control technique. The fundamentals of electrochemical tooth-profile modifications based on real-time control and a mathematical model of the process are discussed in detail. Due to the complex and uncertain relationships among the machining parameters of electrochemical tooth-profile modification processes, we used an artificial neural network to determine the required processing electric current as the tooth-profile modification requirements were supplied. The system was implemented and a practical example was used to demonstrate that this technology is feasible and has potential applications in the production of precision machinery.

Design of Linear Astigmatism Free Three Mirror System (LAF-TMS) for Sky Monitoring Programs

  • Park, Woojin;Pak, Soojong;Chang, Seunghyuk;Kim, Sanghyuk;Kim, Dae Wook;Lee, Hanshin;Lee, Kwangjo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.88.1-88.1
    • /
    • 2017
  • We report a novel design of the "linear astigmatism-free" three mirror system (LAF-TMS). In general, the linear astigmatism is one of the most dominant aberration degrading image qualities in common off-axis systems. The proposed LAF-TMS is based on a confocal off-axis three mirror system, where higher order aberrations are minimized via our numerical optimization. The system comprises three pieces of aluminum-alloy freeform mirrors that are feasible to be fabricated with current single-point diamond turning (SPDT) machining technology. The surface figures, dimensions, and positions of mirrors are carefully optimized for a LAF performance. For higher precision-positioning mechanism, we also included alignment parts: shims (for tilting) and L-brackets (for decentering). Any possible mechanical deformation due to assembly process as well as 1-G gravity, and its influence on optical performances of the system are investigated via the finite element (FE) analysis. The LAF-TMS has low f-number and a wide field of view, which is promising for sky monitoring programs such as supernova surveys.

  • PDF

A Study on the Development of an Automatic Strip Machine for Removing Mobile Phone Glass Protective Films (휴대폰 글라스 보호필름 자동 박리장치 개발에 관한 연구)

  • Choi, Wang-Kug;Hur, Jang-Wook;Kim, Dong-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.9-15
    • /
    • 2016
  • Due to material-specific vulnerabilities, the surfaces of the liquid crystal glasses used in mobile phones can crack easily, with even the smallest cracks undergoing propagation. To protect the glass surfaces, films are attached to the surfaces during the mobile phone production process. However, after machining the liquid crystal, removal of the film on the liquid crystal surface using chemical and mechanical methods is required. In this research, a peeling apparatus was developed for removing the films attached to liquid crystal surfaces during the production process. Mechanical attachment and design automation through experimentation and finite element modelling were performed to confirm the validity of the design.