• Title/Summary/Keyword: machining load

Search Result 179, Processing Time 0.022 seconds

Chip Load Control Using a NC Verification Model Based on Z-Map (Z-map 기반 가공 검증모델을 이용한 칩부하 제어기)

  • Baek Dae Kyun;Ko Tae Jo;Park Jung Whan;Kim Hee Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.68-75
    • /
    • 2005
  • This paper presents a new method for the optimization of feed rate in sculptured surface machining. A NC verification model based on Z-map was utilized to obtain chip load according to feed per tooth. This optimization method can regenerate a new NC program with respect to the commanded cutting conditions and the NC program that was generated from CAM system. The regenerated NC program has not only the same data of the ex-NC program but also the updated feed rate in every block. The new NC data can reduce the cutting time and produce precision products with almost even chip load to the feed per tooth. This method can also reduce tool chipping and make constant tool wear.

Study on a loading mechanism for fixed ratio traction drives (고정 감속비트랙션 드라이브의 압부력 발생장치에 대한 연구)

  • Kim, Sung-Yeol;Kim, Bae-Jin;Park, Dae-Hyun;Oh, Se-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1212-1218
    • /
    • 2003
  • A novel loading mechanism of wedge roller type has been developed. This type traction drive has long system life and high efficiency by changing the pre-load on a contact point. And this loading mechanism does not need precision machining. So it has, as opposed to the conventional loading mechanism, an advantage in saving manufacturing cost. In this paper, by analyzing pre-load generating mechanism, spring pre-load and the roller size are defined and the stress on the contact point by pre-load is calculated. On the basis of this analysis, the model of wedge roller type traction drive for the test is made and was carried out its performance test. It can transmit input torque up to 1.5 N m, with high efficiency over 91% up to 98%, with slip rate under 2.5%.

  • PDF

Analysis on Static Load and Resonance Frequency of Bed in High-speed Automatic Lathe for Precision Machining (정밀가공용 고속 자동선반 베드의 정하중 및 공진주파수 해석)

  • Ha, Joohwan;Lee, YunChul;Joo, KangWo;Jo, Eunjeong;Lee, Young-Sik;Lee, Jae-Kwan;Kim, Kwangsun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.32-38
    • /
    • 2017
  • This paper is about the analysis on the vibration characteristic of tooling units on the precision bed in high-speed automatic lathe for precision machining. An automatic lathe operating at about 25,000 RPM is a critical factor in the self-weight stress and deformation of the bed. Especially, the resonance frequency should be grasped in advance to prevent abnormal vibration that may occur during processing. If the wrong bed is used, the resonant frequency can have a fatal influence on the precision machining and increase the defective rate of precision machined parts such as semiconductor parts. In this paper, vibration characteristics were evaluated through static load and resonance frequency analysis of automatic lathe bed. As a result, the maximum stress was 0.14MPa, the maximum deformation amount was $17.9{\mu}m$, and the natural frequency was 364.72Hz. The resonance frequency was calculated as 718Hz, and the stability was confirmed by being in the range of 400Hz or more, which is the processing condition.

  • PDF

Analysis on Static Load and Resonance Frequency of Bed in Turning and Hobbing Automatic Lathe for Precision Machining (선삭 및 호빙 가공용 자동선반 베드의 정하중 및 공진주파수 해석)

  • Ha, Joo-Hwan;Lee, Yun-Chul;Jo, Eun-Jeong;Lee, Young-Sik;Lee, Jae-Kwan;Kim, Kwang-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.1
    • /
    • pp.66-70
    • /
    • 2018
  • This paper is about the analysis on the vibration characteristic of tooling units on the precision bed in turning and hobbing automatic lathe for precision machining. An automatic lathe operating at about 12,000 RPM is a critical factor in the self-weight stress and deformation of the bed. Especially, the resonance frequency should be grasped in advance to prevent abnormal vibration that may occur during processing. If the wrong bed is used, the resonant frequency can have a fatal influence on the precision machining and increase the defective rate of precision machined parts such as semiconductor parts. In this paper, vibration characteristics were evaluated through static load and resonance frequency analysis of automatic lathe bed. As a result, the maximum stress was 14.52 MPa, the maximum deformation amount was $12.15{\mu}m$, and the natural frequency was 189.43 Hz. The resonance frequency was calculated as 500 Hz, and the stability was confirmed by being in the range of 200 Hz or more, which is the processing condition.

Development of a decision support system for high quality NC data selection in mold manufacturing (고품질의 사출금형 NC 가공 데이터 선정을 위한 의사결정지원시스템 개발)

  • Heo, Eun-Young;Kim, Bo-Hyun;Kim, Dong-Won;Cho, Min-Ho
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.1101-1107
    • /
    • 2005
  • Mold industry has the difficulty to employ young people as the successors of the skilled workers, because it has been regarded as a 3D-jobs(dirty, difficult, and dangerous). To overcome this situation, thus, manufacturing technologies maintained in the factory should be systemized, and engineering systems should support unskilled workers to do their jobs without any difficulty. As a research of developing the supporting system, this study proposes a decision support system that facilitates unskilled workers to easily select high quality NC-data, as well as to increase productivity. The proposed system is assumed to follow a CAM operation scenario that consists of next three steps: 1) identifying several process plans and enumerating feasible unit machining operations (UMOs) from material and part surface information, 2) creating all feasible NC-data based on UMOs using a commercial CAM system, 3) selecting the best NC data among the feasible NC data using four screening criteria, such as machining accuracy, machining allowance, cutting load, and processing time. A case study on the machining of a camera core mold is provided to demonstrate the proposed system.

  • PDF

A Study on the Selection of Grinding Conditions and Evaluation for Curvic Coupling Tooth Machining (Curvic Coupling Tooth 가공의 연삭 조건 선정 및 가공면 평가에 관한 연구)

  • Hur, Du-Kwon;Kim, Myung-Hyun;Kim, Chan Kyu;Jeong, Young Cheol;Jung, Yoon Gyo;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.87-92
    • /
    • 2018
  • As gas turbines for power generation become increasingly more important for high capacity and high efficiency, the technological development and investment of companies are increasing globally. Gas turbine manufacturing technology is only owned by a few companies such as GE, Siemens, and MHI, and our country currently depends on imports of processing technology and component parts. The core part of the gas turbine is curvic coupling tooth processing technology that improves turbine efficiency by smoothly transmitting power to the turbine rotor. Curvic coupling tooth machining and evaluation research is restricted overseas, and it is not underway in Korea. Therefore, in this study, roughing and finishing process technology for curvic coupling tooth machining is developed and a quantitative evaluation method is proposed. For the development of machining technology, the analysis of critical parameters was performed through C & E analysis. In the roughing process, the conditions considering the minimum machining time and tool load ratio were determined. Finishing process conditions were determined based on the contact ratio between the tooth surfaces. The image-processing method is presented for evaluation of the contact ratio and a verification test was performed.

A Study on 5-Axis Machining of Roller Gear Cam for Rotary Table (로터리테이블용 롤러기어캠의 5-축 가공에 관한 연구)

  • Cho, Hyun-Deog;Park, Jong-Bae;Shin, Yong-Bum;Lee, Kang-Su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.127-134
    • /
    • 2017
  • A rotary table is a positioning device used in metalworking for the multiple axes of machine tools, and the utilization trend is increasing with machining efficiency. In the construction of a rotary table, the core technology is a power transfer unit that drives the table, typically a gear type and a roller gear cam type. As the rollers installed on the turret column have rolling movement on the contact surface of the roller gear cam, the roller gear cam type has the advantage of low wear, high load, and fast driving. Therefore, it is currently being replaced by a roller gear cam type. In this study, we researched a 5-axis machining method for the roller gear cam on a rotary table and a new method of applying double roller gear cam curve to reduce the noise and shock between the roller and the cam surface. We implemented the 5-axis machining process in this study using software to generate NC-code and machined the roller gear cams using a Mazak Integrex-200IV. We found that the roller gear cam and turret were able to identify mutual touch status and the noise from the operation of the roller gear cam was substantially reduced.

A Study on the Development and Precise Performance Test of a Screw Type Flowmeter (스크류 유량계의 개발 및 정밀 성능평가에 관한 연구)

  • Hwang, Jong-Dae;Oh, Ji-Young;Jung, Yoon-Gyo;Lee, Sang-Ryul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.87-95
    • /
    • 2009
  • This research introduces the efficient modeling and manufacturing method using reverse engineering combined with rotational simulation of a pair of screw and mill-turn machining realized a proposed NC program. Because previously developed model had insufficient flow measuring accuracy, we considered that matter in the aspect of method of modeling and performance test. For that reason we modified the modeling which could minimize a gab between male and female screw, and developed precise tester which consists of constant tank, flowmeter and load cell, etc., and then conducted the test for defining characteristic and accuracy of flowmeter and repeated same test 5-times. Consequently we could obtain satisfied measuring accuracy and reproducibility indicated in the catalog of master model. Hence we give our conclusion as to the validity of developing accurate screw type flowmeter using the proposed process such as reverse engineering, mill-turn machining and precise performance test.

Numerical Design Method for Water-Lubricated Hybrid Sliding Bearings

  • Feng, Liu;Bin, Lin;Xiaofeng, Zhang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.47-50
    • /
    • 2008
  • This paper presents a new water-lubricated hybrid sliding bearing for a high speed and high accuracy main shaft system, along with the numerical method used for its design. The porous material for the restrictor and the restriction parameter were chosen based on the special requirements of the water-lubricated bearing. Subsequent numerical calculations give the load capacity, stiffness, and friction power of different forms of water-lubricated bearings. The pressure distribution of the water film in a 6-cavity bearing is shown, based on the results of the numerical calculations. A comparison of oil-lubricated and water-lubricated bearings shows that the latter benefits more from improved processing precision and efficiency. An analysis of the stiffness and friction power results shows that 6-cavity bearings are the preferred type, due their greater stiffness and lower friction power. The average elevated temperature was calculated and found to be satisfactory. The relevant parameters of the porous restrictor were determined by calculating the restriction rate. All these results indicate that this design for a water-lubricated bearing meets specifications for high speed and high accuracy.

A Study on the measurement of Table Deflection using Laser Interferometer and It's Inspection using FEA (레이저 간섭계에 의한 테이블의 처짐측정과 FEA에 의한 이의 검증)

  • 이승수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.204-209
    • /
    • 1998
  • The acceleration of the performance of machine tools influences the development of the semi-conductor and optical technology as the development of NC and measurement technology. We can mention that a traction role of the acceleration for the development like that depends on the development of the measurement technics Stylus instrument method, STM, SEM, Laser interferometer method which are used for measuring the quasi-static error of machine tools. Because the measurement has been done to unload condition without considering of mechanical stiffness in the case of machining center as we measure the quasi-static error of machine tools on general studies, people who works on the spot has many problems on the data value. Therefor we will help working more accurately on the spot by measuring, analyzing, displaying the deflection of the table and support shaft when we load on the table and the support shaft of machining center using laser interferometer. Also we try to settle new conception of the measurement method and more accurate grasp of the deflection tendency by verifing the tendency of the error measured through the comparison of the simulated error using ANSYS, a common finite element analysis program, which is able to measure heat deformation, material deformation, and error resulted form this study.

  • PDF