• Title/Summary/Keyword: machine-part group

Search Result 78, Processing Time 0.023 seconds

Parts grouping by a hierarchical divisive algorithm and machine cell formation (계층 분리 알고리즘에 의한 부품 그룹핑 및 셀 구성)

  • Lee, Choon-Shik;Hwang, Hark
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.589-594
    • /
    • 1991
  • Group Technology (GT) is a technique for identifying and bringing together related or similar components in a production process in order to take advantage of their similarities by making use of, for example, the inherent economies of flow production methods. The process of identification, from large variety and total of components, of the part families requiring similar manufacturing operations and forming the associated groups of machines is referred as 'machine-component grouping'. First part of this paper is devoted to describing a hierarchical divisive algorithm based on graph theory to find the natural part families. The objective is to form components into part families such that the degree of inter-relations is high among components within the same part family and low between components of different part families. Second part of this paper focuses on establishing cell design procedures. The aim is to create cells in which the most expensive and important machines-called key machine - have a reasonably high utilization and the machines should be allocated to minimize the intercell movement of machine loads. To fulfil the above objectives, 0-1 integer programming model is developed and the solution procedures are found. Next an attempt is made to test the feasibility of the proposed method. Several different problems appearing in the literature are chosen and the results air briefly showed.

  • PDF

Design of Manufacturing Cell and Cellular Layout based on Genetic Algorithm (유전 알고리듬에 기초한 제조셀과 셀 배치의 설계)

  • Cho, Kyu-Kab;Lee, Byung-Uk
    • IE interfaces
    • /
    • v.14 no.1
    • /
    • pp.20-29
    • /
    • 2001
  • This paper presents a concurrent design approach that deals with manufacturing cell formation and cellular layout in Cellular Manufacturing System. Manufacturing cell formation is to group machines into machine cells dedicated to manufacture of part families, and cellular layout problem determines layout of the manufacturing cells within shop and layout of the machines within a cell. In this paper, a concurrent approach for design of machine cell and cellular layout is developed considering manufacturing parameters such as alternative process plans, alternative machines, production volume and processing time of part, and cost per unit time of operation. A mathematical model which minimizes total cost consisting of machine installation cost, machine operating cost, and intercell and intracell movements cost of part is proposed. A hybrid method based on genetic algorithm is proposed to solve the manufacturing cell formation and cellular layout design problem concurrently. The performance of the hybrid method is examined on several problems.

  • PDF

An Algorithm for Minimizing Exceptional Elements Considering Machine Duplication Cost and Space Constraint in Cellular Manufacturing System (기계중복비용과 공간제약을 고려한 예외적 요소의 최소화 알고리듬)

  • Chang, Ik;Chung, Byung-hee
    • IE interfaces
    • /
    • v.12 no.1
    • /
    • pp.10-18
    • /
    • 1999
  • Job shop manufacturing environments are using the concept of cellular manufacturing systems(CMS) which has several advantages in reducing production lead times, setup times, work-in-process, etc. Utilizing the similarities between cell-machine, part-machine, and the shape/size of parts, CMS can group machines and parts resulting in improved efficiency of this system. However, when grouping machines and parts in machine cells, there inevitably occurs exceptional elements(EEs), which can not operate in the same machine cell. Minimizing these EEs in CMS is a critical point that improving production efficiency. Constraints in machine duplication cost, machining process technology, machining capability, and factory space limitations are main problems that prevent achiving the goal of maintaining an ideal CMS environment. This paper presents an algorithm that minimizes EEs under the constraints of machine duplication cost and factory space limitation. Developing exceptional operation similarity(EOS) by cell-machine incidence matrix and part-machine incidence matrix, it brings the machine cells that operate the parts or not. A mathematical model to minimize machine duplication is developed by EOS, followed by a heuristic algorithm in order to reflect dynamic situation resulting from minimizing exceptional elements process and the mathematical model. A numerical example is provided to illustrate the algorithm.

  • PDF

The Machine-Part Group Formation for Minimizing the tool Exchange (공구 교체 횟수에서 최소로 하는 기계-부품그룹 형성)

  • 홍상우
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.45
    • /
    • pp.329-332
    • /
    • 1998
  • This Paper proposes a mathematical model to solve the cell formation problem with exceptional elements, Exceptional elements are bottleneck machines and exceptional parts that span two or more manufacturing cells. The model suggests whether it is cost-effective to eliminate an EE (by machine duplication or part subcontracting), or whether the intercellular transfer caused by the EE should remain in the cell formation. It provides an optimal solution for resolving the interaction created by EE in the initial cell formation solution. In addition, the model recognizes potentially advantageous mixed strategies ignored by previous approaches.

  • PDF

A Computer-Aided Inspection Planning System for On-Machine Measurement - Part I : Global Inspection Planning -

  • Lee, Hong-Hee;Cho, Myeong-Woo;Yoon, Gil-Sang;Choi, Jin-Hwa
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1349-1357
    • /
    • 2004
  • Computer-Aided Inspection Planning (CAIP) is the integration bridge between CAD/CAM and Computer Aided Inspection (CAI). A CAIP system for On-Machine Measurement (OMM) is proposed to inspect the complicated mechanical parts efficiently during machining or after machining. The inspection planning consists of Global Inspection Planning (GIP) and Local Inspection Planning (LIP). In the GIP, the system creates the optimal inspection sequence of the features in a part by analyzing the various feature information such as the relationship of the features, Probe Approach Directions (PAD), etc. Feature groups are formed for effective planning, and special feature groups are determined for sequencing. The integrated process and inspection plan is generated based on the sequences of the feature groups and the features in a feature group. A series of heuristic rules are developed to accomplish it. In the LIP of Part II, the system generates inspection parameters. The integrated inspection planning is able to determine optimum manufacturing sequence for inspection and machining processes. Finally, the results are simulated and analyzed to verify the effectiveness of the proposed CAIP.

A self-organizing neural networks approach to machine-part grouping in cellular manufacturing systems (셀 생산 방식에서 자기조직화 신경망을 이용한 기계-부품 그룹의 형성)

  • 전용덕;강맹규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.48
    • /
    • pp.123-132
    • /
    • 1998
  • The group formation problem of the machine and part is a very important issue in the planning stage of cellular manufacturing systems. This paper investigates Self-Organizing Map(SOM) neural networks approach to machine-part grouping problem. We present a two-phase algorithm based on SOM for grouping parts and machines. SOM can learn from complex, multi-dimensional data and transform them into visually decipherable clusters. Output layer in SOM network is one-dimensional structure and the number of output node has been increased sufficiently to spread out the input vectors in the order of similarity. The proposed algorithm performs remarkably well in comparison with many other algorithms for the well-known problems shown in previous papers.

  • PDF

A Computer Method for GT Plant Layout and Its Simulation Analysis (컴퓨터를 이용한 GT설비배치(設備配置)와 시뮬레이션에 의한 평가(評價))

  • Sin, Hyeon-Pyo
    • Journal of Korean Society for Quality Management
    • /
    • v.12 no.1
    • /
    • pp.17-30
    • /
    • 1984
  • A computer method is developed for group technology layout and its simulation analysis. The method is composed of three phases: Phase I sorts the parts by its similar production routes and forms part families. Phase II plots the layout by machine cell and evaluates the group layout alternatives by the total process time analysis and the part travel distance evaluation analysis. Phase III also evaluates the alternatives by simulation analysis using SIMAN simulation software. All the computer programs are developed with BASIC except SIMAN simulation.

  • PDF

Genetic algorithms for optimization : a case study of machine-part group formation problems (기계-부품군 형성문제의 사례를 통한 유전 알고리즘의 최적화 문제에의 응용)

  • 한용호;류광렬
    • Korean Management Science Review
    • /
    • v.12 no.2
    • /
    • pp.105-127
    • /
    • 1995
  • This paper solves different machine-part group formation (MPGF) problems using genetic algorithms to demonstrate that it can be a new robust alternative to the conventional heuristic approaches for optimization problems. We first give an overview of genetic algorithms: Its principle, various considerations required for its implementation, and the method for setting up parameter values are explained. Then, we describe the MPGF problem which are critical to the successful operation of cellular manufacturing or flexible manufacturing systems. We concentrate on three models of the MPGF problems whose forms of the objective function and/or constraints are quite different from each other. Finally, numerical examples of each of the models descibed above are solved by using genetic algorithms. The result shows that the solutions derived by genetic algorithms are comparable to those obtained through problem-specific heuristic methods.

  • PDF

A Heuristic Approach to Machine-Part Grouping Cellular Manufacturing (셀 생산방식에서 기계-부품 그룹을 형성하는 발견적 해법)

  • Kim Jin-Seock;Lee Jong-Sub;Kang Maing-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.1
    • /
    • pp.121-128
    • /
    • 2005
  • This paper proposes the heuristic approach for the generalized GT(Group Technology) problem to consider the restrictions which are given the number of cell, maximum number of machines and minimum number of machines. This approach is classified into two stages. In the first stage, we use the similarity coefficient method which is proposed and calculate the similarity values about each pair of all machines and align these values in descending order. If two machines which is selected is possible to link the each other on the edge of machine cell and they don't have zero similarity value, then we assign the machines to the machine cell. In the second stage, it is the course to form part families using proposed grouping efficacy. Finally, machine-part incidence matrix is realigned to block diagonal structure. The results of using the proposed approach are compared to the Modified p-median model.